
The goal of these notes is to outline some steps in deriving the partition function in classical statistical
mechanics.

We will not go into the physics, which might take a little long to explain, even though it is what really
motivates the exercises below. Let E denote the mean energy of the system, and Ei the energy at the ith
state. There are states n1, n2, . . . and there are N systems. There are infinitely many states, and all but
finitely many of them are nonzero. The N systems can be thought of particles —of which there are a large
number— and the ni states are boxes that some of the N particles can occupy. The number of states adds
up to the number of systems. The probability of state i occurring is pi = ni/N .

• Find the number of ways of distributing the N systems among the n1, n2, . . . states. This is given
by the multinomial coefficient: (

N
n1, n2, . . .

)
=

N !

n1!n2! · · ·
.

To show this, try to show first as a warm-up exercise that the number of ways of choosing a k-subset
from a collection of N elements is given by the binomial coefficient(

N

k

)
= N !/((N − k)!k!).

Remark: While there are other ways of maximizing the multinomial coefficient, e.g., see
http://www.maths.qmul.ac.uk/∼twm/MTH742U/AdvCombEx.pdf,

the notion of entropy —defined below— can be readily extended to continuous probability distri-
butions...

• Show that N ! ∼ NNe−N , that is, N ! is approximately NNe−N for N large. (An informal argument
can be given by approximating lnN ! by the integral

´ N
1

lnx dx. A more rigorous argument will
look like the proof for Stirling’s approximation formula.)

• The multinomial coefficient involves products and quotients. Since what we want to find are the
n1, n2, . . . making the multinomial coefficient as large as possible, we can alternatively maximize
instead the logarithm of the multinomial coefficient. Show that

ln

((
N

n1, n2, . . .

))
∼ −N

∑
pi ln pi,

where pi = ni/N is the probability of the ith state. The above quantity is often denoted by
S(p1, p2, . . . ), and it is called entropy.

Warning: This is the other bit of a leap of faith in this series of exercises —namely, optimizing
the approximation (in this case the entropy) will lead to optimizing the original function (the
natural logarithm of the multinomial coefficient). There are silly examples in which a function
approximates another one but things go wrong in the optimization. Here is one such example: Let
f(x) = x2+x−2 be a function defined from (−1,∞) to R. Suppose we want to “approximate” this
function by another one. Pick g(x) = x2 + 1

4
x
x+1

+ 1, also defined from (−1,∞) to R. One might
say that g is a reasonable “approximation” to f since

lim
x→∞

f(x)

g(x)
= 1.

(We remark that Stirling’s approximation satisfies the above property, that is, when we say that
n! ∼

√
2πn(n/e)n, that means that limn→∞ n!/(

√
2πn(n/e)n) = 1.) Single-variable calculus tells us

that x = −1/2 is a critical point of both f and g. However, the second derivative test shows that
x = −1/2 is a local maximum of f , whereas for g it is a local minimum. (One issue is that we have
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not been precise with what we mean by “approximating” a function by another.)

• In order to maximize the entropy, solve the following optimization problem:

minimize
∑

pi ln pi

subject to
∑

pi = 1∑
piEi = E

(Notice that the function we want to minimize is −S(p1, p2, . . . ).) The minimization problem above
can be solved with Lagrange multipliers:∑

pi ln pi + α

(∑
i

pi − 1

)
+ β

(∑
piEi − E

)
,

where α, β are the Lagrange multipliers. Show that

pj = e−(1+α)e−βEj =
1

Z
e−βEj ,

where Z = e1+α.

Using the constraint
∑
pj = 1, we have∑ 1

Z
e−βEj = 1 =⇒ Z(β) =

∑
j

e−βEj .

The quantity Z(β) is called the partition function.


