Math 4707 Intro to combinatorics and graph theory Spring 2008, Vic Reiner

Midterm exam 2- Due Wednesday April 16, in class
Instructions: This is an open book, open library, open notes, open web, take-home exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (30 points total; 10 points each part) Recall that a forest is a graph $G=(V, E)$ containing no cycles, and a tree is a connected forest.
(a) What is the number of edges $|E|$ in a forest that has $|V|=n$ vertices and exactly c different connected components?
(b) Prove that in a tree on vertex set $V=\{1,2, \ldots, n\}$, if d_{i} denotes the degree of vertex i, then

$$
\sum_{i=1}^{n}\left(d_{i}-1\right)=n-2
$$

(c) Prove that given any set of nonnegative integers d_{i} that satisfy the equation in part (b), the number of different (labelled) trees on vertex set $V=\{1,2, \ldots, n\}$ in which vertex i has degree d_{i} is the multinomial coefficient

$$
\binom{n-2}{d_{1}-1, d_{2}-1, \ldots, d_{n}-1}
$$

2. (20 points) Prove that the number of unlabelled trees on n vertices (that is, isomorphism classes of trees on n vertices) is at most $\binom{2 n-2}{n-1}$. (Hint: how did we already get an upper bound, in lecture or in the book, on the number of such unlabelled trees?)
3. (30 points total) Recall that K_{n} denotes the complete graph on vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, having an edge $\left\{v_{i}, v_{j}\right\}$ for each pair $1 \leq i<j \leq n$. Recall also that $K_{m, n}$ denotes the complete bipartite graph on bipartite vertex set $X \sqcup Y=\left\{x_{1}, \ldots, x_{m}\right\} \sqcup\left\{y_{1}, \ldots, y_{n}\right\}$, having an edge $\left\{x_{i}, y_{j}\right\}$ for $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$. Answer each of the following, and prove your answer in each case.
(a) (5 points) For which values of $n \geq 2$ does K_{n} have an Euler tour ($=$ a closed Eulerian walk in our book's terminology)?
(b) (5 points) For which values of $n \geq 2$ does K_{n} have a Hamilton cycle?
(c) (10 points) For which values of $m, n \geq 2$ does $K_{m, n}$ have an Euler tour?
(d) (10 points) For which values of $m, n \geq 2$ does $K_{m, n}$ have a Hamilton cycle?
4. (20 points) Your company has 6 employees $\left\{x_{1}, \ldots, x_{6}\right\}$ and 6 tasks to perform $\left\{y_{1}, \ldots, y_{6}\right\}$, but each employee has a different set of tasks they are capable of doing:

employee	tasks they can do
x_{1}	$\left\{y_{2}, y_{4}, y_{5}\right\}$
x_{2}	$\left\{y_{1}, y_{2}, y_{3}, y_{5}, y_{6}\right\}$
x_{3}	$\left\{y_{2}, y_{4}, y_{5}\right\}$
x_{4}	$\left\{y_{2}, y_{4}\right\}$
x_{5}	$\left\{y_{2}, y_{4}, y_{5}\right\}$
x_{6}	$\left\{y_{1}, y_{3}, y_{5}, y_{6}\right\}$

Match each employee to at most one task, so that different employees end up doing different tasks, in such a way that the maximum number of tasks are performed. Prove that your answer attains the maximum.

