Math 5251 Error-correcting codes and finite fields Fall 2021, Vic Reiner Final exam

Due Wednesday Dec. 15 by 11:59pm, on Canvas

Instructions: This is an open book, open library, open notes, open web, take-home exam, but you are *not* allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (20 points total; 5 points each) True or False. Your answers must be justified either by counterexamples or proofs to receive full credit.

(a) The quotient ring $\mathbb{F}_2[x]/(x^4+x^2+1)$ is a finite field with 16 elements.

(b) In $\mathbb{F}_5[x]/(x^2 + x + 1)$, the element $\alpha = \overline{x}$ is a primitive root.

(c) There exists at least one \mathbb{F}_2 -linear code \mathcal{C} of blocklength 5 for which the vector [1, 0, 0, 0, 0] is **not** a coset leader.

(d) The first-order Reed-Muller code with blocklength n = 64 can correct up to 32 errors.

2. (20 points total) Let C be an \mathbb{F}_2 -linear [n, k, d]-code with blocklength n = 9 and minimum distance d = 5 that achieves the *highest possible* dimension k among all such \mathbb{F}_2 -linear [9, k, 5] codes. For these specific values of n and d, what ...

(a) (4 points) does Hamming's sphere-packing bound say about k?

- (b) (4 points) does the Singleton bound say about k?
- (c) (4 points) does the Gilbert-Varshamov bound say about k?

(d) (4 points) does the Plotkin bound say about k?

(e) (4 points) are the only two possibilities for the *exact* number m of codewords in C?

(Your answer to (e) should be two integers less than 1,000,000.)

3. (10 points total) Compute explicitly the multiplicative inverse $[\overline{x^2+1}]^{-1}$ to the element $\overline{x^2+1}$ within $\mathbb{F}_2[x]/(x^5+x+1)$.

4. (15 points) Find **all** primitive roots in $\mathbb{F}_3[x]/(x^2+1)$, expressing each uniquely as an \mathbb{F}_3 -linear combination $a + b\delta$ where $\delta = \overline{x}$ and $a, b \in \mathbb{F}_3$. Explain how you know that your list is correct.

5. (15 points total) Let C be the cyclic code inside $(\mathbb{F}_2)^{11}$ defined as the row space of the 11×11 circulant matrix with first row [1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0].

- (a) (10 points) Find $k = \dim_{\mathbb{F}_2}(\mathcal{C})$.
- (b) (5 points) Find a matrix H whose rowspace is \mathcal{C}^{\perp} .
- 6. (20 points total) Let H be this matrix with entries in \mathbb{F}_3

$$H = \begin{bmatrix} 1 & 2 & 1 & 1 & 0 \\ 1 & 1 & 2 & 0 & 1 \end{bmatrix}$$

whose rowspace is the dual code \mathcal{C}^{\perp} to an [n, k, d] \mathbb{F}_3 -linear code \mathcal{C} .

- (a) (5 points) What is n?
- (b) (5 points) What is k?
- (c) (5 points) What is d?
- (d) (5 points) What is the maximum number of errors C can correct?