Math 5251 Error-correcting codes and finite fields
 Fall 2021, Vic Reiner Final exam

Due Wednesday Dec. 15 by 11:59pm, on Canvas
Instructions: This is an open book, open library, open notes, open web, take-home exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (20 points total; 5 points each) True or False. Your answers must be justified either by counterexamples or proofs to receive full credit.
(a) The quotient ring $\mathbb{F}_{2}[x] /\left(x^{4}+x^{2}+1\right)$ is a finite field with 16 elements.
(b) In $\mathbb{F}_{5}[x] /\left(x^{2}+x+1\right)$, the element $\alpha=\bar{x}$ is a primitive root.
(c) There exists at least one \mathbb{F}_{2}-linear code \mathcal{C} of blocklength 5 for which the vector $[1,0,0,0,0]$ is not a coset leader.
(d) The first-order Reed-Muller code with blocklength $n=64$ can correct up to 32 errors.
2. (20 points total) Let \mathcal{C} be an \mathbb{F}_{2}-linear $[n, k, d]$-code with blocklength $n=9$ and minimum distance $d=5$ that achieves the highest possible dimension k among all such \mathbb{F}_{2}-linear $[9, k, 5]$ codes. For these specific values of n and d, what ...
(a) (4 points) does Hamming's sphere-packing bound say about k ?
(b) (4 points) does the Singleton bound say about k ?
(c) (4 points) does the Gilbert-Varshamov bound say about k ?
(d) (4 points) does the Plotkin bound say about k ?
(e) (4 points) are the only two possibilities for the exact number m of codewords in \mathcal{C} ?
(Your answer to (e) should be two integers less than 1,000, 000.)
3. (10 points total) Compute explicitly the multiplicative inverse $\left[\overline{x^{2}+1}\right]^{-1}$ to the element $\overline{x^{2}+1}$ within $\mathbb{F}_{2}[x] /\left(x^{5}+x+1\right)$.
4. (15 points) Find all primitive roots in $\mathbb{F}_{3}[x] /\left(x^{2}+1\right)$, expressing each uniquely as an \mathbb{F}_{3}-linear combination $a+b \delta$ where $\delta=\bar{x}$ and $a, b \in \mathbb{F}_{3}$. Explain how you know that your list is correct.
5. (15 points total) Let \mathcal{C} be the cyclic code inside $\left(\mathbb{F}_{2}\right)^{11}$ defined as the row space of the 11×11 circulant matrix with first row $[1,0,0,1,0,0,0,0,0,0,0]$.
(a) (10 points) Find $k=\operatorname{dim}_{\mathbb{F}_{2}}(\mathcal{C})$.
(b) (5 points) Find a matrix H whose rowspace is \mathcal{C}^{\perp}.
6. (20 points total) Let H be this matrix with entries in \mathbb{F}_{3}

$$
H=\left[\begin{array}{lllll}
1 & 2 & 1 & 1 & 0 \\
1 & 1 & 2 & 0 & 1
\end{array}\right]
$$

whose rowspace is the dual code \mathcal{C}^{\perp} to an $[n, k, d] \mathbb{F}_{3}$-linear code \mathcal{C}.
(a) (5 points) What is n ?
(b) (5 points) What is k ?
(c) (5 points) What is d ?
(d) (5 points) What is the maximum number of errors \mathcal{C} can correct?

