Math 5251 Error-correcting codes and finite fields Fall 2021, Vic Reiner Midterm exam 1
 Due Wednesday Oct. 13 by 11:59pm, via Canvas

Instructions: This is an open book, open library, open notes, open web, take-home exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (30 points total; 5 points each) True or False. Your answers must be justified either by counterexamples or proofs to receive full credit.
(a) There exists a source W with $\# W=5$ and word probabilities having a binary Huffman code with codewords of lengths $(2,2,2,3,4)$.
(b) There exists a prefix binary encoding $f: W \rightarrow\{0,1\}^{*}$ for some source $W=\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right\}$ with codewords of length $(2,2,2,3,4)$.
(c) If one has a uniquely decipherable n-ary encoding $f: W \rightarrow \Sigma^{*}$ of a source W, with $\# \Sigma=n$ and in which every codeword $f\left(w_{i}\right)$ has length at most ℓ, then $\# W \leq n^{\ell}$.
(d) Any source W of cardinality $\# W=n^{\ell}$ with $n \geq 2$ and $\ell \geq 1$ has at least one uniquely decipherable encoding $f: W \rightarrow \Sigma^{*}$ in which all codewords $f(w)$ have length at most ℓ.
(e) Assume that source $W=\left\{w_{1}, \ldots, w_{m}\right\}$ with word probabilities $\left\{p_{1}, \ldots, p_{m}\right\}$ has some $p_{i_{0}} \geq \frac{1}{2}$. Then in any binary Huffman encoding of W, the length of the word encoding $w_{i_{0}}$ will be 1 .
(f) A source $W=\left\{w_{1}, \ldots, w_{m}\right\}$ with word probabilities $\left\{p_{1}, \ldots, p_{m}\right\}$ that has a word of length 1 in one of its binary Huffman encodings must have some $p_{i_{0}} \geq \frac{1}{2}$.
2. (15 points) Assume one is encoding long binary words using a CRC with polynomial $g(x)=x^{4}+x^{3}+1$ in $\mathbb{F}_{2}[x]$, that is, tacking on four 4 extra bits that represent the remainder upon division by $g(x)$. Prove that 2-bit errors that occur exactly 15 positions apart will go undetected.
3. Let source $W=\left\{w_{1}, w_{2}, \ldots, w_{8}\right\}$ have word probabiities

$$
\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{64}, \frac{1}{128}, \frac{1}{128}\right\}
$$

(a) (5 points) Compute the (binary) entropy $H(W)$. An approximate decimal final answer is fine, but must be explained.
(b) (10 points) Compute the minimum among among all uniquely decipherable binary encodings $f: W \rightarrow\{0,1\}^{*}$ of the average length of the code words $f\left(w_{i}\right)$.
4. Suppose that we are sending length 4 binary words $w=b_{1} b_{2} b_{3} b_{4}$ with $b_{i} \in\{0,1\}=\mathbb{F}_{2}$ through a noisy binary symmetric channel (BSC) having error probability p for each bit sent.
(a) (5 points) Compute the probability of at least one error during transmission, as a function of p.

Now we choose to send w with two extra parity check bits as follows:

$$
f(w)=b_{1} b_{2} b_{3} b_{4} b_{5} b_{6}
$$

where

$$
\begin{aligned}
b_{5} & :=b_{1}+b_{2}, \\
b_{6} & :=b_{3}+b_{4} .
\end{aligned}
$$

(b) (10 points) Compute the probability of at least one undetected error when w is sent as $f(w)$, again as a function of p.
(c) (5 points) Considering the image of f as a set of codewords \mathcal{C} inside $\{0,1\}^{*}$ of length 6 , what is the (binary) rate of the code \mathcal{C} ?
5. (20 points) Prove by induction on m that, for any binary Huffman encoding of a source W of size m, the word lengths $\left(\ell_{1}, \ldots, \ell_{m}\right)$ achieve equality in the Kraft-McMillan inequality, that is, $\sum_{i=1}^{m} \frac{1}{2^{e_{i}}}=1$.

