Math 5251 Error-correcting codes and finite fields Fall 2021, Vic Reiner Midterm exam 2

Due Wednesday Nov. 17 by 11:59pm, on Canvas

Instructions: This is an open book, open library, open notes, open web, take-home exam, but you are *not* allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (30 points total; 5 points each) True or False. Your answers must be justified either by counterexamples or proofs to receive full credit.

(c) There exist integers m > 1 for which $\mathbb{Z}/(3^m - 1)$ is a field.

(d) When *n* is odd, an \mathbb{F}_2 -linear code \mathcal{C} and its dual code \mathcal{C}^{\perp} inside $(\mathbb{F}_2)^n$ will always intersect only in the zero vector $\underline{0}$, that is, $\mathcal{C} \cap \mathcal{C}^{\perp} = \{\underline{0}\}$.

(e) Let \mathcal{C} be the \mathbb{F}_7 -linear code in $(\mathbb{F}_7)^5$ whose dual code \mathcal{C}^{\perp} has as its generator matrix the 1×5 matrix

$$H = \begin{bmatrix} \overline{1} & \overline{2} & \overline{3} & \overline{4} & \overline{5} \end{bmatrix}.$$

Then $m = |\mathcal{C}| = 2401.$

(f) For C the same code as in part (e), the minimum distance d(C) = 3.

2. (a) (10 points) The integer 1223 is prime, and so we know $\alpha = \overline{200}$ in \mathbb{F}_{1223} has a multiplicative inverse α^{-1} . Find α^{-1} explicitly, using the extended Euclid algorithm.

(b) (10 points) The polynomials

$$f(x) = x^{2} + 1$$
$$g(x) = x^{4} + x + 1$$

in $\mathbb{F}_2[x]$ have no common factors. Hence there will exist polynomials a(x), b(x) in $\mathbb{F}_2[x]$ satisfying a(x)f(x) + b(x)g(x) = 1. Find such polynomials a(x), b(x) explicitly, using the extended Euclid algorithm.

3. (a) (5 points) List all of the irreducible polynomials in $\mathbb{F}_2[x]$ whose degrees are 1, 2 or 3, and explain how you know that they are irreducible.

(b) (10 points) Write down the unique factorization into irreducibles in $\mathbb{F}_2[x]$ for $x^7 + x^2 + x + 1$, with proof that it is correct.

4. (15 points total) Let G be the following matrix

$$G = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}.$$

(a) (5 points) Thinking of the entries of G as elements of \mathbb{F}_2 , let \mathcal{C}_1 be the \mathbb{F}_2 -linear code in $(\mathbb{F}_2)^8$ having G as its generator matrix, that is, \mathcal{C}_1 is the row space of G. What is the (binary) rate of \mathcal{C}_1 ?

(b) (5 points) What is the minimum distance of C_1 , and up to how many errors can it correct?

(c) (5 points) Now think of the entries of G as elements of \mathbb{F}_3 . so that G generates an \mathbb{F}_3 -linear code \mathcal{C}_2 in $(\mathbb{F}_3)^8$. What is the (ternary) rate of \mathcal{C}_2 ?

5. (a) (5 points) Find a representative for $\overline{1000}$ in $\mathbb{Z}/37$ that lies within the set of residues $\{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{36}\}$.

(b) (5 points) Do the same for $\overline{1,000,000}$ in $\mathbb{Z}/37$.

(c) (10 points) Prove that if a number N is written in decimal notation with digits $a_{\ell}a_{\ell-1}\cdots a_2a_1a_0$ (so that a_0 is the ones digit, a_1 is the tens digit, a_2 the hundreds digit, etc) then in $\mathbb{Z}/37$ one has

$$\overline{N} = \dots + \overline{a_5 a_4 a_3} + \overline{a_2 a_1 a_0}.$$

For example, in $\mathbb{Z}/37$ one has $\overline{41, 246, 789, 963} = \overline{41} + \overline{246} + \overline{789} + \overline{963}$.

 $\mathbf{2}$