Math 5251 Error-correcting codes and finite fields Fall 2021, Vic Reiner
 Midterm exam 2
 Due Wednesday Nov. 17 by 11:59pm, on Canvas

Instructions: This is an open book, open library, open notes, open web, take-home exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (30 points total; 5 points each) True or False. Your answers must be justified either by counterexamples or proofs to receive full credit.
(a) In $\mathbb{Z} / 98765432$, the element $\overline{100000000000000000000}$ has a multiplicative inverse.
(b) In $\mathbb{Z} / 987654321$, the element $\overline{100000000000000000000}$ has a multiplicative inverse.
(c) There exist integers $m>1$ for which $\mathbb{Z} /\left(3^{m}-1\right)$ is a field.
(d) When n is odd, an \mathbb{F}_{2}-linear code \mathcal{C} and its dual code \mathcal{C}^{\perp} inside $\left(\mathbb{F}_{2}\right)^{n}$ will always intersect only in the zero vector $\underline{0}$, that is, $\mathcal{C} \cap \mathcal{C}^{\perp}=\{\underline{0}\}$.
(e) Let \mathcal{C} be the \mathbb{F}_{7}-linear code in $\left(\mathbb{F}_{7}\right)^{5}$ whose dual code \mathcal{C}^{\perp} has as its generator matrix the 1×5 matrix

$$
H=\left[\begin{array}{lllll}
\overline{1} & \overline{2} & \overline{3} & \overline{4} & \overline{5}
\end{array}\right] .
$$

Then $m=|\mathcal{C}|=2401$.
(f) For \mathcal{C} the same code as in part (e), the minimum distance $d(\mathcal{C})=3$.
2. (a) (10 points) The integer 1223 is prime, and so we know $\alpha=\overline{200}$ in \mathbb{F}_{1223} has a multiplicative inverse α^{-1}. Find α^{-1} explicitly, using the extended Euclid algorithm.
(b) (10 points) The polynomials

$$
\begin{aligned}
& f(x)=x^{2}+1 \\
& g(x)=x^{4}+x+1
\end{aligned}
$$

in $\mathbb{F}_{2}[x]$ have no common factors. Hence there will exist polynomials $a(x), b(x)$ in $\mathbb{F}_{2}[x]$ satisfying $a(x) f(x)+b(x) g(x)=1$. Find such polynomials $a(x), b(x)$ explicitly, using the extended Euclid algorithm.
3. (a) (5 points) List all of the irreducible polynomials in $\mathbb{F}_{2}[x]$ whose degrees are 1,2 or 3 , and explain how you know that they are irreducible.
(b) (10 points) Write down the unique factorization into irreducibles in $\mathbb{F}_{2}[x]$ for $x^{7}+x^{2}+x+1$, with proof that it is correct.
4. (15 points total) Let G be the following matrix

$$
G=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & 1
\end{array}\right] .
$$

(a) (5 points) Thinking of the entries of G as elements of \mathbb{F}_{2}, let \mathcal{C}_{1} be the \mathbb{F}_{2}-linear code in $\left(\mathbb{F}_{2}\right)^{8}$ having G as its generator matrix, that is, \mathcal{C}_{1} is the row space of G. What is the (binary) rate of \mathcal{C}_{1} ?
(b) (5 points) What is the minimum distance of \mathcal{C}_{1}, and up to how many errors can it correct?
(c) (5 points) Now think of the entries of G as elements of \mathbb{F}_{3}. so that G generates an \mathbb{F}_{3}-linear code \mathcal{C}_{2} in $\left(\mathbb{F}_{3}\right)^{8}$. What is the (ternary) rate of \mathcal{C}_{2} ?
5. (a) (5 points) Find a representative for $\overline{1000}$ in $\mathbb{Z} / 37$ that lies within the set of residues $\{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{36}\}$.
(b) (5 points) Do the same for $\overline{1,000,000}$ in $\mathbb{Z} / 37$.
(c) (10 points) Prove that if a number N is written in decimal notation with digits $a_{\ell} a_{\ell-1} \cdots a_{2} a_{1} a_{0}$ (so that a_{0} is the ones digit, a_{1} is the tens digit, a_{2} the hundreds digit, etc) then in $\mathbb{Z} / 37$ one has

$$
\bar{N}=\cdots+\overline{a_{5} a_{4} a_{3}}+\overline{a_{2} a_{1} a_{0}} .
$$

For example, in $\mathbb{Z} / 37$ one has $\overline{41,246,789,963}=\overline{41}+\overline{246}+\overline{789}+\overline{963}$.

