Math 5251 Error-correcting codes and finite fields, Fall 2024, Vic Reiner

Midterm exam 2

Due Wednesday November 13 by 11:59pm, via Canvas

Instructions: This is an open book, open notes, open web, takehome exam, but you may *not* collaborate. You must **clearly indicate** any such sources used, including AI sources such as ChatGPT. The instructor is the only human source that you are allowed to consult.

1. (25 points total) Let p be a prime number, and C an \mathbb{F}_p -linear code with a generator matrix

$$H = \begin{bmatrix} \overline{3} & \overline{4} & \overline{5} & \cdots & \overline{m-1} & \overline{m} \end{bmatrix}$$

for some integer m with $5 \le m \le p - 1$.

(a) (15 points) Compute the three parameters [n, k, d] for C as a linear code, and justify your answer.

(b) (10 points) Compute the three parameters [n, k, d] for its dual code \mathcal{C}^{\perp} , and justify your answer.

2. (25 points) For each prime number p, either construct explicitly a linear code \mathcal{C} having $|\mathcal{C} \cap \mathcal{C}^{\perp}| = p$, or prove that none can exist.

3. (25 points) Let a, b, c be distinct positive integers, and p a prime number. Does x^5 have a multiplicative inverse in $\mathbb{F}_p[x]/(1+x^a+x^b+x^c)$? Prove your answer.

- 4. (25 points total)
- (a) (5 points) Compute GCD(41, 100000), showing your work.

(b) (5 points) Compute $(\overline{41})^{-1}$ in $\mathbb{Z}/100000$, showing your work.

(c) (5 points) Compute $(\overline{100000})^{-1}$ in $\mathbb{Z}/41$, showing your work.

(d) (10 points) Let N be a positive integer written in decimal notation

 $N = \cdots d_{14}d_{13}d_{12}d_{11}d_{10}d_9d_8d_7d_6d_5d_4d_3d_2d_1d_0,$

meaning that d_0 is the ones digits, d_1 is the tens digits, d_2 is the hundreds digit, etc. Prove that in $\mathbb{Z}/41$, one has

 $\overline{N} = \dots + \overline{d_{14}d_{13}d_{12}d_{11}d_{10}} + \overline{d_9d_8d_7d_6d_5} + \overline{d_4d_3d_2d_1d_0},$

where each of $d_4d_3d_2d_1d_0$, $d_9d_8d_7d_6d_5$, $d_{14}d_{13}d_{12}d_{11}d_{10}$, ... is again a number written in decimal notation.