Math 5251 Error-correcting codes and finite fields Spring 2022, Vic Reiner
 Final exam
 Due Wednesday May 4 by 11:59pm, on Canvas

Instructions: This is an open book, open library, open notes, open web, take-home exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (30 points total; 5 points each) True or False. Your answers must be justified either by counterexamples or proofs to receive full credit.
(a) The quotient ring $\mathbb{F}_{3}[x] /\left(x^{2}+x+1\right)$ is a finite field with 9 elements.
(b) In the field $\mathbb{F}_{3}[x] /\left(x^{2}+1\right)$, the element $\alpha=\bar{x}$ is a primitive root.
(c) In a finite field $\mathbb{F}_{2^{5}}$, having 2^{5} elements, there will be 30 elements which are primitive roots.
(d) When decoding using an $[7,5,4] \mathbb{F}_{3}$-linear code \mathcal{C}, the syndrome table must list 9 possible syndromes.
(e) The first-order Reed-Muller code with blocklength $n=32$ can detect up to 15 errors.
(f) One can create a Reed-Solomon code with parameters $[n, k, d]=$ [24, 9, 20].
2. (15 points total; 5 points each) Let $R=\mathbb{F}_{5}[x] /\left(x^{3}+x+1\right)$, a quotient ring of $\mathbb{F}_{5}[x]$.
(a) (5 points) Prove that R is a field.
(b) (5 points) What is the cardinality (=size) of R ?
(c) (5 points) Let α denote the image of the polynomial $x+1$ in the quotient ring R. Find its multiplicative inverse α^{-1} in R explicitly.
3. (30 points total; 5 points each) Let H be this matrix with entries in \mathbb{F}_{2}

$$
H=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

whose rowspace is the dual code \mathcal{C}^{\perp} to an $[n, k, d] \mathbb{F}_{2}$-linear code \mathcal{C}.
(a) (5 points) What is n ?
(b) (5 points) What is k ?
(c) (5 points) What is d ?
(d) (5 points) What is the maximum number of errors \mathcal{C} can correct?
(e) (5 points) Write down a generator matrix G whose row space is \mathcal{C}.
(f) (5 points) Write down a syndrome table that you could use in decoding transmitted words from \mathcal{C}. Explain how you got the table.
4. (15 points total; 5 points each) Let \mathcal{C} be an \mathbb{F}_{2}-linear $[n, k, d]$-code with blocklength $n=11$ and minimum distance $d=5$ that achieves the highest possible dimension k among all such \mathbb{F}_{2}-linear $[11, k, 5]$ codes. For these specific values of n and d, what ...
(a) (5 points) does Hamming's sphere-packing bound say about k ?
(b) (5 points) does the Gilbert-Varshamov bound say about k ?
(c) (5 points) are the only two possibilities for the exact number m of codewords in \mathcal{C} ?
(Your answer to (c) should be two integers less than 2000.)
5. (10 points total; 5 points each) Let \mathcal{C} be the cyclic code inside $\left(\mathbb{F}_{2}\right)^{9}$ defined as the row space of the 9×9 circulant matrix with first row $[1,1,1,0,0,0,0,0,0]$.
(a) (5 points) Find $k=\operatorname{dim}_{\mathbb{F}_{2}}(\mathcal{C})$.
(b) (5 points) Find a matrix H whose rowspace is \mathcal{C}^{\perp}.

