Math 5251 Error-correcting codes and finite fields Spring 2022, Vic Reiner Midterm exam 2
 Due Wednesday Apr. 6 by 11:59pm, on Canvas

Instructions: This is an open book, open library, open notes, open web, take-home exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (30 points total; 5 points each) True or False. Your answers must be justified either by counterexamples or proofs to receive full credit.
(a) In $\mathbb{Z} / 9876543$, the element $\overline{100000000000000000000}$ has a multiplicative inverse.
(b) In $\mathbb{Z} / 987654$, the element $\overline{100000000000000000000}$ has a multiplicative inverse.
(c) There exists an integer $m \geq 1$ for which $\mathbb{Z} /\left(5^{m}-1\right)$ is a field.
(d) When n is odd, an \mathbb{F}_{2}-linear code \mathcal{C} and its dual code \mathcal{C}^{\perp} inside $\left(\mathbb{F}_{2}\right)^{n}$ will always intersect only in the zero vector $\underline{0}$, that is, $\mathcal{C} \cap \mathcal{C}^{\perp}=\{\underline{0}\}$.
(e) Let \mathcal{C} be the \mathbb{F}_{11}-linear code in $\left(\mathbb{F}_{11}\right)^{6}$ whose dual code \mathcal{C}^{\perp} has as its generator matrix the 1×6 matrix

$$
H=\left[\begin{array}{llllll}
\overline{2} & \overline{3} & \overline{4} & \overline{5} & \overline{6} & \overline{7}
\end{array}\right] .
$$

Then $m:=|\mathcal{C}|=161051$.
(f) For \mathcal{C} the same code as in (e), \mathcal{C} has minimum distance $d(\mathcal{C})=3$.
2. (a) (10 points) The integer 7919 is prime, and so we know $\alpha=\overline{100}$ in \mathbb{F}_{7919} has a multiplicative inverse α^{-1}. Find α^{-1} explicitly, using the extended Euclid algorithm.
(b) (10 points) The polynomials

$$
\begin{aligned}
& f(x)=x^{2} \\
& g(x)=x^{5}+x+1
\end{aligned}
$$

in $\mathbb{F}_{2}[x]$ have no common factors. Hence there will exist polynomials $a(x), b(x)$ in $\mathbb{F}_{2}[x]$ satisfying $a(x) f(x)+b(x) g(x)=1$. Find such polynomials $a(x), b(x)$ explicitly, using the extended Euclid algorithm.
3. Let $\mathcal{C} \subseteq\left(\mathbb{F}_{5}\right)^{12}$ be the following \mathbb{F}_{5}-linear code:

$$
\begin{aligned}
& \mathcal{C}=\left\{\mathbf{x}=\left[x_{1}, \ldots, x_{12}\right] \in\left(\mathbb{F}_{5}\right)^{12}:\right. x_{1} \\
&=x_{2}=x_{3}=x_{4}, \\
& x_{5}=x_{6}=x_{7}=x_{8} \\
& x_{9}\left.=x_{10}=x_{11}=x_{12}\right\} .
\end{aligned}
$$

So \mathcal{C} is the third extension of the 4 -fold repetition code over \mathbb{F}_{5}.
(a) (5 points) What is the dimension $k=\operatorname{dim}_{\mathbb{F}_{5}}(\mathcal{C})$?
(b) 5 points) What is the 5 -ary rate of \mathcal{C} ?
(c) (5 points) What is the minimum distance $d(\mathcal{C})$?
(d) (5 points) Write down a generator matrix G for \mathcal{C}.
(e) (5 points) Write down a generator matrix H for its dual code \mathcal{C}^{\perp}.
(f) (5 points) What is the 5 -ary rate of its dual code \mathcal{C}^{\perp} ?
4. (a) (5 points) Find a representative for $\overline{1000}$ in $\mathbb{Z} / 37$ that lies within the set of residues $\{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{36}\}$.
(b) (5 points) Do the same for $\overline{1,000,000}$ in $\mathbb{Z} / 37$.
(c) (10 points) Prove that if a number N is written in decimal notation with digits $a_{\ell} a_{\ell-1} \cdots a_{2} a_{1} a_{0}$ (so that a_{0} is the ones digit, a_{1} is the tens digit, a_{2} the hundreds digit, etc), then in $\mathbb{Z} / 37$ one has

$$
\bar{N}=\cdots+\overline{a_{5} a_{4} a_{3}}+\overline{a_{2} a_{1} a_{0}} .
$$

For example, in $\mathbb{Z} / 37$ one has $\overline{41,246,789,963}=\overline{41}+\overline{246}+\overline{789}+\overline{963}$.

