Math 5285 Honors abstract algebra
 Fall 2007, Vic Reiner

Midterm exam 1- Due Wednesday December 12, in class

Instructions: This is an open book, open library, open notes, open web, take-home exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (10 points) Artin's Exercise 2.4.19 on page 73.
2. (20 points total; 5 for each part)

Let T be the linear transformation $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which fixes the origin and rotates a vector through an angle of θ counterclockwise, represented by the following matrix with respect to the standard basis vectors $\left(e_{1}, e_{2}\right)$ for \mathbb{R}^{2} :

$$
A=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] .
$$

Recall that to diagonalize A over \mathbb{R} means to find a matrix $P \in G L_{2}(\mathbb{R})$ for which $A^{\prime}:=P A P^{-1}$ is diagonal.
(a) Prove that one can diagonalize A over \mathbb{R} if and only if θ is a multiple of π.
(b) Consider the same matrix A as an element of $\mathbb{C}^{2 \times 2}$, that is, as having complex number entries. Prove that it can always be diagonalized over \mathbb{C}, regardless of the choice of θ.
(c) Let T be rotation in \mathbb{R}^{3}, with rotation axis passing through the origin in the direction of a nonzero vector $v \in \mathbb{R}^{3}$, and rotating through an angle of $\frac{\pi}{2}$ (i.e. 90 degrees) about this axis. Describe a basis for \mathbb{R}^{3} and a matrix $A \in \mathbb{R}^{3 \times 3}$ that represents T with respect to this basis.
(d) Consider the same matrix in part (c) as lying in $\mathbb{C}^{3 \times 3}$, and diagonalize it over \mathbb{C}.
3. (15 points total; 5 for part (a), 10 for part (b))

Prove that inside $G L_{n}\left(\mathbb{F}_{p}\right)$ for p prime, the subset consisting of upper triangular matrices having all 1's on the diagonal is ...
(a) a subgroup, and
(b) a p-Sylow subgroup.
4. (20 points total; 5 for part (a), 5 for part (b), 10 for part (c)) Let p be a prime.
(a) Show that any element A in $G L_{n}\left(\mathbb{F}_{p}\right)$ has finite order.
(b) Show that a diagonal element

$$
D=\left[\begin{array}{llll}
c_{1} & & & \\
& c_{2} & & \\
& & \ddots & \\
& & & c_{n}
\end{array}\right]
$$

in $G L_{n}\left(\mathbb{F}_{p}\right)$ will have order equal to the least common multiple

$$
L C M\left(d_{1}, d_{2}, \ldots, d_{n}\right)
$$

in which d_{i} is the multiplicative order of c_{i} inside the group \mathbb{F}_{p}^{\times}.
(c) Prove that if A in $G L_{n}\left(\mathbb{F}_{p}\right)$ has order p then it is not diagonalizable.
5. (20 points total; 10 for each part)

Recall that for a ring R, we let R^{+}denote the abelian group structure coming from the addition in R, ignoring multiplication.
(a) Prove that for every positive integer m, any group homomorphism $\phi:(\mathbb{Z} / m \mathbb{Z})^{+} \rightarrow \mathbb{Z}^{+}$must be the zero homomorphism, that is, $\phi(x)=0$ for all x in $\mathbb{Z} / m \mathbb{Z}$.
(b) Prove that any group homomorphism $\phi: \mathbb{Q}^{+} \rightarrow \mathbb{Z}^{+}$must be the zero homomorphism that is, $\phi(x)=0$ for all x in \mathbb{Q}.
6. (15 points total; 5 points each for parts (a),(b),(c); no credit for (d)) Recall these formulas for the binomial coefficient

$$
\binom{n}{k}=\frac{n(n-1)(n-2) \cdots(n-k+1)}{k!}=\frac{n!}{k!(n-k)!}
$$

counting the number of k-elements subset of an n-element set N.
(a) Prove the first formula by considering the two sets
$T=\left\{k\right.$-element ordered sequences $\left(a_{1}, \ldots, a_{k}\right)$ of distinct elements in $\left.N\right\}$
$S=\left\{k\right.$-element (unordered) subsets $\left.\left\{a_{1}, \ldots, a_{k}\right\} \subset N\right\}$
and showing that the map

$$
\begin{aligned}
T & \stackrel{f}{\longrightarrow} S \\
\left(a_{1}, \ldots, a_{k}\right) & \longmapsto\left\{a_{1}, \ldots, a_{k}\right\}
\end{aligned}
$$

has every fiber $f^{-1}\left(\left\{a_{1}, \ldots, a_{k}\right\}\right)$ of the same cardinality. That is, explain how knowing this fiber cardinality and the cardinality of T leads to the formula for the cardinality of S.
(b) Prove the second formula by considering the following action of the symmetric group $G=S_{n}$ on S

$$
\begin{aligned}
S_{n} \times S & \rightarrow S \\
\left(p,\left\{a_{1}, \ldots, a_{k}\right\}\right) & \mapsto p\left\{a_{1}, \ldots, a_{k}\right\}:=\left\{p\left(a_{1}\right), \ldots, p\left(a_{k}\right)\right\}
\end{aligned}
$$

and applying the counting formula $|G|=\left|O_{s}\right|\left|G_{s}\right|$.
Now let p be a prime, and define the p-binomial coefficient
$\left[\begin{array}{l}n \\ k\end{array}\right]_{p}:=\frac{\left(p^{n}-1\right)\left(p^{n}-p\right)\left(p^{n}-p^{2}\right) \cdots\left(p^{n}-p^{k-1}\right)}{\left(p^{k}-1\right)\left(p^{k}-p\right)\left(p^{k}-p^{2}\right) \cdots\left(p^{k}-p^{k-1}\right)}=\frac{n!_{p}}{p^{k(n-k)} \cdot k!_{p} \cdot(n-k)!p}$
in which we are using the notation

$$
n!_{p}:=\left(p^{n}-1\right)\left(p^{n}-p\right)\left(p^{n}-p^{2}\right) \cdots\left(p^{n}-p^{n-1}\right)
$$

Let V be an n-dimensional vector space over \mathbb{F}_{p}, and define
$T=\left\{k\right.$-element ordered linearly indepent sets $\left(v_{1}, \ldots, v_{k}\right)$ inside $\left.V\right\}$
$S=\{k$-dimensional subspaces $W \subset V\}$.
(c) Show that S has cardinality $|S|=\left[\begin{array}{l}n \\ k\end{array}\right]_{p}$ by showing that the map

$$
\begin{aligned}
T & \xrightarrow{f} S \\
\left(v_{1}, \ldots, v_{k}\right) & \longmapsto W:=\operatorname{Span}\left\{v_{1}, \ldots, v_{k}\right\}
\end{aligned}
$$

has every fiber $f^{-1}(W)$ of the same cardinality. That is, explain how knowing this fiber cardinality and the cardinality of T leads to the first formula for $\left[\begin{array}{l}n \\ k\end{array}\right]_{p}$ as the cardinality of S.
(d) (Just for fun if you feel like it; not for credit) Can you show $|S|$ is given by the second formula for $\left[\begin{array}{l}n \\ k\end{array}\right]_{p}$, by considering the following action of the general linear group $G=G L_{n}\left(\mathbb{F}_{p}\right)$ on S

$$
\begin{aligned}
G L_{n}\left(\mathbb{F}_{p}\right) \times S & \rightarrow S \\
(g, W) & \mapsto g(W)
\end{aligned}
$$

and applying the counting formula $|G|=\left|O_{s}\right|\left|G_{s}\right|$?

