Math 5285 Honors abstract algebra
 Fall 2007, Vic Reiner

Midterm exam 1- Due Wednesday October 10, in class
Instructions: This is an open book, open library, open notes, open web, take-home exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (15 points total) Artin's Chapter 1 Miscellaneous Problems \# 7 on p. 37.
2. (16 points total) Let p be a permutation of the numbers $\{1,2, \ldots, n\}$, and let $\operatorname{inv}(p)$ be the number of pairs (i, j) with $1 \leq i<j \leq n$ for which $p(i)>p(j)$.

Prove that $\operatorname{sign}(p)=(-1)^{\operatorname{inv}(p)}$.
3. (15 points total) Prove that for any matrix $A \in \mathbb{R}^{m \times n}$, there exist matrices $P \in G L_{m}(\mathbb{R})$ and $Q \in G L_{n}(\mathbb{R})$ and a nonnegative integer r, such that $D:=P A Q$ has exactly r ones down its diagonal and zeroes elsewhere.

In other words, D has

$$
d_{1,1}=d_{2,2}=\cdots=d_{r, r}=1
$$

and $d_{i, j}=0$ for all other values of i, j.
(Hint: putting A into row-reduced echelon form helps.)
4. (4 points each, 24 points total) For each of the following sets and composition laws, indicate whether or not it is a group. If so, explain why, and if not explain why not.
(a) $\left\{A \in \mathbb{Z}^{n \times n}: \operatorname{det}(A) \in\{+1,-1\}\right\}$, under matrix multiplication.
(b) $\left\{A \in \mathbb{Z}^{n \times n}: \operatorname{det}(A) \in 2 \mathbb{Z}\right\}$, under matrix multiplication.
(c) $\left\{A \in \mathbb{R}^{n \times n}: \operatorname{det}(A)>0\right\}$, under matrix multiplication.
(d) Permutations in S_{n} that have exactly one cycle (of size n) in their cycle notation, under composition.
(e) $\left\{z=x+i y \in \mathbb{C}^{\times}=\mathbb{C} \backslash\{0\}: x, y \in \mathbb{Q}\right\}$, under complex multiplication.
(f) Elementary matrices in $\mathbb{R}^{n \times n}$ of all types ((i), (ii), (iii)) together with the identity matrix $I_{n \times n}$, under matrix multiplication.
5. (5 points each; 15 points total) Let $\phi: G \longrightarrow G^{\prime}$ be a homomorphism between two groups G, G^{\prime}.
(a) Prove that if $H^{\prime} \subset G^{\prime}$ is a subgroup, then

$$
\phi^{-1}\left(H^{\prime}\right):=\left\{g \in G: \phi(g) \in H^{\prime}\right\}
$$

is a subgroup of G.
(b) Prove that if H^{\prime} is a normal subgroup of G^{\prime}, then $\phi^{-1}\left(H^{\prime}\right)$ as defined above is a normal subgroup of G.
(c) Let $H \subset G$ be a subgroup. Does this imply that its image

$$
\phi(H):=\{\phi(h): h \in H\}
$$

is a subgroup of G^{\prime} ? Either prove this, or falsify it with an explicit counterexample.
6. (15 points total) Prove that if a matrix $A \in \mathbb{R}^{n \times n}$ has $A^{t}=-A$ and A is invertible then n must be even.

