Math 5285 Honors fundamental structures of algebra Fall 2018, Vic Reiner

Midterm exam 1- Due Wednesday October 10, in class

Instructions: There are 6 problems. This is an open book, open library, open notes, open web, take-home exam, but you are *not* allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (20 points total, 10 points each part) Let A be a matrix in $\mathbb{R}^{m \times n}$.

(a) Show that A has a right-inverse R (that is, R in $\mathbb{R}^{n \times m}$ with $AR = I_m$) if and only if one can row-reduce A to a matrix in *row-echelon* form having no zero rows.

(b) Prove that A in $\mathbb{R}^{m \times n}$ never has a *unique* right-inverse if m < n.

2. (20 points total, 5 points each) Define a set of matrices $\int A \subset \mathbb{C}^{n \times n} \cdot A^T A$ }.

$$G_n := \{ A \in \mathbb{C}^{n \times n} : A^T A = \pm I_n \}$$

(a) Prove that G_n is a subgroup of $GL_n(\mathbb{C})$.

(b) Prove that every A in G_n has det A lying in

 $\begin{cases} \{+1, -1, +i, -i\} & \text{ if } n \text{ is odd,} \\ \{+1, -1\} & \text{ if } n \text{ is even.} \end{cases}$

Also show, by examples that all six possibilities can occur. That is, for every odd n, exhibit examples of four matrices A in G_n with det A = +1, -1, +i, -i, and for every even n, exhibit examples of two matrices A in G_n with det A = +1, -1.

- (c) Show $H_n := \{A \in G_n : \det A = +1\}$ is a subgroup of G_n , and a normal subgroup.
- (d) Prove the index $[G_n: H_n]$ (= the number of different cosets gH_n in G_n) equals

$$\begin{cases} 4 & \text{if } n \text{ is odd,} \\ 2 & \text{if } n \text{ is even.} \end{cases}$$

3. (20 points total, 5 points each) Prove, or disprove via explicit counterexamples, the following assertions about the orders $\operatorname{ord}(g) := |\langle g \rangle| = |\{1, g, g^2, \ldots\}|$ of elements of any finite group G.

(a) For integers i, j, if i divides j, then $\operatorname{ord}(g^j)$ divides $\operatorname{ord}(g^i)$.

- (b) For integers i, j, if i divides j, then $\operatorname{ord}(g^i)$ divides $\operatorname{ord}(g^j)$.
- (c) For integers i, j, one has that $\operatorname{ord}(g^{i+j})$ divides $\operatorname{ord}(g^i) \cdot \operatorname{ord}(g^j)$.
- (d) For g, h in G, one has that $\operatorname{ord}(gh)$ divides $\operatorname{ord}(g) \cdot \operatorname{ord}(h)$.

4. (20 points) Let A in $\mathbb{R}^{m \times n}$ have a row-reduced echelon form with r pivot ones. Prove that there exist matrices P in $GL_m(\mathbb{R})$ and Q in $GL_n(\mathbb{R})$ for which

	[1	0	• • •	$\begin{array}{c} 0 \\ 0 \end{array}$	0	• • •	0
	0	1	• • •		0		0
	:	÷	·	÷	÷	 	:
PAQ =	0	0	• • •	1	0	• • •	0
	0	0	• • •	0	0	• • •	0
	:	÷	:	÷	÷		:
	0	0	• • •	0	0		0

where the matrix on the right contains r entries equal to one in its upper left.

5. (10 points total, 5 points each) Let $\phi: G_1 \longrightarrow G_2$ be a homomorphism between two groups G_1, G_2 .

(a) Prove that for H_2 any subgroup of G_2 , the subset

$$\phi^{-1}(H_2) := \{ g \in G_1 : \phi(g) \in H_2 \}$$

is a subgroup of G_1 .

(b) Show H_2 a normal subgroup of G_2 implies $\phi^{-1}(H_2)$ a normal subgroup of G_1 .

6. (10 points) Write down an isomorphism between the circle group

$$S^1 := \{ z \in \mathbb{C}^{\times} : |z| = 1 \}$$

and the group

$$SO_2 := \{ A \in \mathbb{R}^{2 \times 2} : A^T A = I_2, \det A = +1 \}.$$

Make sure to explain why your map is an isomorphism.