Math 5285 Honors fundamental structures of algebra Fall 2018, Vic Reiner Midterm exam 1- Due Wednesday October 10, in class

Instructions: There are 6 problems. This is an open book, open library, open notes, open web, take-home exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (20 points total, 10 points each part) Let A be a matrix in $\mathbb{R}^{m \times n}$.
(a) Show that A has a right-inverse R (that is, R in $\mathbb{R}^{n \times m}$ with $A R=I_{m}$) if and only if one can row-reduce A to a matrix in row-echelon form having no zero rows.
(b) Prove that A in $\mathbb{R}^{m \times n}$ never has a unique right-inverse if $m<n$.
2. (20 points total, 5 points each) Define a set of matrices

$$
G_{n}:=\left\{A \in \mathbb{C}^{n \times n}: A^{T} A= \pm I_{n}\right\} .
$$

(a) Prove that G_{n} is a subgroup of $G L_{n}(\mathbb{C})$.
(b) Prove that every A in G_{n} has $\operatorname{det} A$ lying in

$$
\begin{cases}\{+1,-1,+i,-i\} & \text { if } n \text { is odd } \\ \{+1,-1\} & \text { if } n \text { is even }\end{cases}
$$

Also show, by examples that all six possibilities can occur. That is, for every odd n, exhibit examples of four matrices A in G_{n} with $\operatorname{det} A=+1,-1,+i,-i$, and for every even n, exhibit examples of two matrices A in G_{n} with $\operatorname{det} A=+1,-1$.
(c) Show $H_{n}:=\left\{A \in G_{n}: \operatorname{det} A=+1\right\}$ is a subgroup of G_{n}, and a normal subgroup.
(d) Prove the index $\left[G_{n}: H_{n}\right]$ ($=$ the number of different cosets $g H_{n}$ in G_{n}) equals

$$
\begin{cases}4 & \text { if } n \text { is odd } \\ 2 & \text { if } n \text { is even. }\end{cases}
$$

3. (20 points total, 5 points each) Prove, or disprove via explicit counterexamples, the following assertions about the orders $\operatorname{ord}(g):=|\langle g\rangle|=\left|\left\{1, g, g^{2}, \ldots\right\}\right|$ of elements of any finite group G.
(a) For integers i, j, if i divides j, then $\operatorname{ord}\left(g^{j}\right)$ divides $\operatorname{ord}\left(g^{i}\right)$.
(b) For integers i, j, if i divides j, then $\operatorname{ord}\left(g^{i}\right)$ divides $\operatorname{ord}\left(g^{j}\right)$.
(c) For integers i, j, one has that $\operatorname{ord}\left(g^{i+j}\right)$ divides $\operatorname{ord}\left(g^{i}\right) \cdot \operatorname{ord}\left(g^{j}\right)$.
(d) For g, h in G, one has that $\operatorname{ord}(g h)$ divides $\operatorname{ord}(g) \cdot \operatorname{ord}(h)$.
4. (20 points) Let A in $\mathbb{R}^{m \times n}$ have a row-reduced echelon form with r pivot ones. Prove that there exist matrices P in $G L_{m}(\mathbb{R})$ and Q in $G L_{n}(\mathbb{R})$ for which

$$
P A Q=\left[\begin{array}{ccccccc}
1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 1 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0
\end{array}\right]
$$

where the matrix on the right contains r entries equal to one in its upper left.
5. (10 points total, 5 points each) Let $\phi: G_{1} \longrightarrow G_{2}$ be a homomorphism between two groups G_{1}, G_{2}.
(a) Prove that for H_{2} any subgroup of G_{2}, the subset

$$
\phi^{-1}\left(H_{2}\right):=\left\{g \in G_{1}: \phi(g) \in H_{2}\right\}
$$

is a subgroup of G_{1}.
(b) Show H_{2} a normal subgroup of G_{2} implies $\phi^{-1}\left(H_{2}\right)$ a normal subgroup of G_{1}.
6. (10 points) Write down an isomorphism between the circle group

$$
S^{1}:=\left\{z \in \mathbb{C}^{\times}:|z|=1\right\}
$$

and the group

$$
S O_{2}:=\left\{A \in \mathbb{R}^{2 \times 2}: A^{T} A=I_{2}, \operatorname{det} A=+1\right\}
$$

Make sure to explain why your map is an isomorphism.

