Math 5285 Honors abstract algebra Spring 2008, Vic Reiner Final exam - Due Friday May 9, in class

Instructions: This is an open book, open library, open notes, open web, take-home exam, but you are *not* allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (30 points total; 5 points each part)

(a) (5 points) Show that in the symmetric group S_n , conjugating an *m*-cycle gives an *m*-cycle, and more specifically

$$\sigma(a_1 a_2 \cdots a_{m-1} a_m) \sigma^{-1} = (\sigma(a_1) \sigma(a_2) \cdots \sigma(a_{m-1}) \sigma(a_m)).$$

(b) (5 points) Show that in the symmetric group S_5 , the subgroup $\langle \tau, \sigma \rangle$ generated by any 2-cycle $\tau = (ij)$ together with any 5-cycle (a b c d e) is the whole group S_5 .

(Recall that we wanted this fact from (b) in lecture, in order to conclude that an irreducible quintic polynomial $f(x) \in \mathbb{Q}[x]$ that had exactly 3 real roots in \mathbb{C} has Galois group $G(\operatorname{Split}_{\mathbb{Q}}(f)/\mathbb{Q})$ isomorphic to S_5 .)

(c) (5 points) Which cycle types (= lists of cycle sizes) for permutations of S_5 are the ones that lie in the subgroup of *alternating* permutations A_5 ?

(d) (5 points) Show that the two 5-cycles (12345) and (21345) are conjugate within S_5 , but *not* conjugate within A_5 .

(e) (5 points) Write down the class equation for A_5 , that is, the list of sizes of all of the conjugacy classes, and how they add up to $|A_5|$.

(f) (5 points) Prove that a normal subgroup H of a finite group G must have its cardinality |H| expressible as a sum of cardinalities of distinct conjugacy classes in G, and one of these cardinalities must be 1, corresponding to the identity conjugacy class $\{e\}$.

Use this to deduce that A_5 is a simple group (i.e. it has no nonidentity proper normal subgroups), and hence is *not* a solvable group. Explain why this proves S_5 is also *not* a solvable group.

(Recall that we wanted this to conclude that the quintic polynomials $f \in \mathbb{Q}[x]$ with exactly 3 real roots mentioned above are not solvable by radicals).

2. (15 points total) Let $(\mathbb{Q} \subset)\mathbb{F} \subset \mathbb{K}$ be a Galois extension in characteristic zero, with Galois group $G(\mathbb{K}/\mathbb{F}) \cong D_4$, the dihedral group of order 8, the symmetries of a square.

(a) (10 points) How many intermediate subfields \mathbb{L} are there lying strictly between \mathbb{F} and \mathbb{K} , that is, with $\mathbb{F} \subsetneq \mathbb{L} \subsetneq \mathbb{K}$?

(b) (5 points) How many of the intermediate subfields \mathbb{L} from part (a) have \mathbb{L}/\mathbb{F} Galois?

3. (20 points total) Consider the matrix $A \in \mathbb{Z}^{4 \times 4}$ shown below

$$A = \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ -1 & -1 & -1 & 3 \end{bmatrix}$$

as representing a \mathbb{Z} -module homomorphism $\mathbb{Z}^4 \xrightarrow{A} \mathbb{Z}^4$ with respect to the standard basis for \mathbb{Z}^4 in both the domain and range.

Write the two finitely generated Z-modules $\ker A$ and $\mathbb{Z}^4/\operatorname{im} A$ explicitly in the form

$$\mathbb{Z} \oplus \cdots \oplus \mathbb{Z} \oplus \mathbb{Z}/n_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/n_r\mathbb{Z}$$

guaranteed by the theorem on finitely generated modules over a Euclidean domain.

- 4. (15 points total) Artin's Problem 12.6.4 on page 487.
- 5. (10 points total) Artin's Problem 12.7.21 on page 489.
- 6. (10 points total) Consider the matrix $A \in \mathbb{C}^{5 \times 5}$ shown below

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

making $V = \mathbb{C}^5$ a finitely-generated $\mathbb{C}[t]$ -module, in which t acts on an element v in $V = \mathbb{C}^5$ as left-multiplication by A.

Write V explicitly in the form

$$\mathbb{C}[t] \oplus \cdots \oplus \mathbb{C}[t] \oplus \mathbb{C}[t]/(f_1(t)) \oplus \cdots \oplus \mathbb{C}[t]/(f_r(t))$$

guaranteed by the theorem on finitely generated modules over a Euclidean domain.