Math 5285 Honors abstract algebra Spring 2008, Vic Reiner Final exam - Due Friday May 9, in class

Instructions: This is an open book, open library, open notes, open web, take-home exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (30 points total; 5 points each part)
(a) (5 points) Show that in the symmetric group S_{n}, conjugating an m-cycle gives an m-cycle, and more specifically

$$
\sigma\left(a_{1} a_{2} \cdots a_{m-1} a_{m}\right) \sigma^{-1}=\left(\sigma\left(a_{1}\right) \sigma\left(a_{2}\right) \cdots \sigma\left(a_{m-1}\right) \sigma\left(a_{m}\right)\right) .
$$

(b) (5 points) Show that in the symmetric group S_{5}, the subgroup $\langle\tau, \sigma\rangle$ generated by any 2-cycle $\tau=(i j)$ together with any 5 -cycle (abcde) is the whole group S_{5}.
(Recall that we wanted this fact from (b) in lecture, in order to conclude that an irreducible quintic polynomial $f(x) \in \mathbb{Q}[x]$ that had exactly 3 real roots in \mathbb{C} has Galois group $G\left(\operatorname{Split}_{\mathbb{Q}}(f) / \mathbb{Q}\right)$ isomorphic to S_{5}.)
(c) (5 points) Which cycle types (= lists of cycle sizes) for permutations of S_{5} are the ones that lie in the subgroup of alternating permutations A_{5} ?
(d) (5 points) Show that the two 5 -cycles (12345) and (21345) are conjugate within S_{5}, but not conjugate within A_{5}.
(e) (5 points) Write down the class equation for A_{5}, that is, the list of sizes of all of the conjugacy classes, and how they add up to $\left|A_{5}\right|$.
(f) (5 points) Prove that a normal subgroup H of a finite group G must have its cardinality $|H|$ expressible as a sum of cardinalities of distinct conjugacy classes in G, and one of these cardinalities must be 1 , corresponding to the identity conjugacy class $\{e\}$.

Use this to deduce that A_{5} is a simple group (i.e. it has no nonidentity proper normal subgroups), and hence is not a solvable group. Explain why this proves S_{5} is also not a solvable group.
(Recall that we wanted this to conclude that the quintic polynomials $f \in \mathbb{Q}[x]$ with exactly 3 real roots mentioned above are not solvable by radicals).
2. (15 points total) Let $(\mathbb{Q} \subset) \mathbb{F} \subset \mathbb{K}$ be a Galois extension in characteristic zero, with Galois group $G(\mathbb{K} / \mathbb{F}) \cong D_{4}$, the dihedral group of order 8 , the symmetries of a square.
(a) (10 points) How many intermediate subfields \mathbb{L} are there lying strictly between \mathbb{F} and \mathbb{K}, that is, with $\mathbb{F} \subsetneq \mathbb{L} \subsetneq \mathbb{K}$?
(b) (5 points) How many of the intermediate subfields \mathbb{L} from part (a) have \mathbb{L} / \mathbb{F} Galois?
3. (20 points total) Consider the matrix $A \in \mathbb{Z}^{4 \times 4}$ shown below

$$
A=\left[\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 3 & -1 \\
-1 & -1 & -1 & 3
\end{array}\right]
$$

as representing a \mathbb{Z}-module homomorphism $\mathbb{Z}^{4} \xrightarrow{A} \mathbb{Z}^{4}$ with respect to the standard basis for \mathbb{Z}^{4} in both the domain and range.

Write the two finitely generated \mathbb{Z}-modules $\operatorname{ker} A$ and $\mathbb{Z}^{4} / \operatorname{im} A$ explicitly in the form

$$
\mathbb{Z} \oplus \cdots \oplus \mathbb{Z} \oplus \mathbb{Z} / n_{1} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / n_{r} \mathbb{Z}
$$

guaranteed by the theorem on finitely generated modules over a Euclidean domain.
4. (15 points total) Artin's Problem 12.6.4 on page 487.
5. (10 points total) Artin's Problem 12.7.21 on page 489.
6. (10 points total) Consider the matrix $A \in \mathbb{C}^{5 \times 5}$ shown below

$$
A=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

making $V=\mathbb{C}^{5}$ a finitely-generated $\mathbb{C}[t]$-module, in which t acts on an element v in $V=\mathbb{C}^{5}$ as left-multiplication by A.

Write V explicitly in the form

$$
\mathbb{C}[t] \oplus \cdots \oplus \mathbb{C}[t] \oplus \mathbb{C}[t] /\left(f_{1}(t)\right) \oplus \cdots \oplus \mathbb{C}[t] /\left(f_{r}(t)\right)
$$

guaranteed by the theorem on finitely generated modules over a Euclidean domain.

