## Math 5285 Honors abstract algebra Spring 2008, Vic Reiner

## Midterm exam 1- Due Wednesday March 5, in class

Instructions: This is an open book, open library, open notes, open web, take-home exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (30 points total; 10 points each part) Define three rings by adjoining roots of quartic polynomials to $\mathbb{F}_{2}=\mathbb{Z} / 2 \mathbb{Z}$ :

$$
\begin{aligned}
& R_{1}=\mathbb{F}_{2}[x] /\left(x^{4}+x+1\right) \\
& R_{2}=\mathbb{F}_{2}[x] /\left(x^{4}+x^{2}+1\right) \\
& R_{3}=\mathbb{F}_{2}[x] /\left(x^{4}+x^{3}+1\right)
\end{aligned}
$$

(a) Prove that $R_{1}, R_{3}$ are fields, but that $R_{2}$ is not a field.
(b) Find a primitive element in $R_{1}$, that is, an element $\beta$ such that $R_{1}^{\times}=R_{1}-\{0\}=\left\{1, \beta, \beta^{2}, \ldots\right\}$.
(c) Give an explicit ring isomorphism $R_{1} \xrightarrow{\varphi} R_{3}$ (and prove that it is an isomorphism).
2. (15 points) Artin's Chapter 11 Section 2 Problem 2 part (b) on p. 442.
3. (20 points) Let $f(x)=a x^{2}+b x+c$ in $\mathbb{R}[x]$ be any irreducible quadratic polynomial, that is, one with $b^{2}-4 a c<0$. Prove there is a ring isomorphism $\mathbb{R}[x] /(f(x)) \cong \mathbb{C}$.
4. (15 points) A field $\mathbb{F}$ is algebraically closed if every nonconstant polynomial $f(x)$ in $\mathbb{F}[x]$ has at least one root in $\mathbb{F}$. Prove that finite fields $\mathbb{F}$ are never algebraically closed.
(Hint: Given a finite field $\mathbb{F}$, can you write down an explicit nonconstant polynomial $f(x)$ that has no roots in $\mathbb{F}$ ?)
5. (20 points total; 10 points each) Two problems from Artin on rings of formal power series:
(a) Artin's Chapter 10 Section 2 Problem 6 part (b) on p. 380.
(b) Artin's Chapter 10 Section 3 Problem 26 on p. 382.

