Math 5286 Honors fundamental structures of algebra- 2nd semester Spring 2019, Vic Reiner Final exam - Due by 5pm on Wednesday May 8
(in my VinH 107 mailbox, or under my VinH 256 office door, or emailed as PDF.)

Instructions: There are 4 problems. This is an open book, open library, open notes, open web, take-home exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (35 points total, 5 points each part) True or False?

True assertions must be proven, and false assertions must be disproven.
(a) The polynomial $f(x)=x^{3}+x^{2}-4 x+1$ in $\mathbb{Q}[x]$ is irreducible, and its splitting field $\mathbb{K}=\operatorname{split}_{\mathbb{Q}}(f(x))$ over \mathbb{Q} has Galois group $G(\mathbb{K} / \mathbb{Q}) \cong S_{3}$.
(b) Every irreducible cubic polynomial $f(x)$ in $\mathbb{Q}[x]$ that has only one real root will have splitting field $\mathbb{K}=\operatorname{split}_{\mathbb{Q}}(f(x))$ with Galois group $G(\mathbb{K} / \mathbb{Q}) \cong S_{3}$.
(c) In a tower of fields $\mathbb{Q} \subset \mathbb{F}_{1} \subset \mathbb{F}_{2} \subset \mathbb{F}_{3}$, if both $\mathbb{F}_{2} / \mathbb{F}_{1}$ and $\mathbb{F}_{3} / \mathbb{F}_{2}$ are Galois, then $\mathbb{F}_{3} / \mathbb{F}_{1}$ will also be Galois.
(d) For all $n=2,3,4, \ldots$, the symmetric group S_{n} is generated by any transposition (i, j) together with any n-cycle $\left(i_{1}, i_{2}, \cdots, i_{n}\right)$.
(e) There are exactly seven strictly intermediate subfields \mathbb{K} with $\mathbb{Q} \subsetneq \mathbb{K} \subsetneq \mathbb{Q}\left(\zeta_{37}\right)$, where $\zeta_{37}=e^{\frac{2 \pi i}{37}}$.
(f) Not all of the intermediate subfields $\mathbb{Q} \subsetneq \mathbb{K} \subsetneq \mathbb{Q}\left(\zeta_{37}\right)$ will have \mathbb{K} / \mathbb{Q} Galois.
(g) Consider two $\mathbb{R}[x]$-modules V_{1}, V_{2} in which as sets, both $V_{1}=\mathbb{R}^{2}$ and $V_{2}=\mathbb{R}^{2}$, but where $x(v)=\left[\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right] v$ for v in V_{1}, while $x(v)=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] v$ for v in V_{2}. Then V_{1}, V_{2} contain the same number of R-submodules.
2. (20 points total) Let $R \subset S$ where R is a principal ideal domain and S is a unique factorization domain (for example, $R=\mathbb{Z} \subset \mathbb{Z}[x]=S$).

Given two elements a, b in R, show that if r is any GCD (greatest common divisor) for a, b in R, and s is any GCD for a, b in S, then r, s are associates in S, that is, $s=u r$ for some unit u in S^{\times}.
3. (20 points total; 5 points each part)
(a) Prove that $f(x)=x^{4}-80$ is irreducible in $\mathbb{Q}[x]$.
(b) Let $\mathbb{K}=\operatorname{split}_{\mathbb{Q}}(f(x))=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ where the α_{i} are the four roots of $f(x)$. Write down the entire Galois group $G:=G(\mathbb{K} / \mathbb{Q})$ as a subgroup of the symmetric group S_{4} permuting these four roots, and identify G up to isomorphism as one of the transitive subgroups of S_{4} discussed in lecture.
(c) How many intermediate subfields \mathbb{L} are there with $\mathbb{Q} \subsetneq \mathbb{L} \subsetneq \mathbb{K}$? Explain.
(d) How many intermediate subfields \mathbb{L} with $\mathbb{Q} \subsetneq \mathbb{L} \subsetneq \mathbb{K}$ have \mathbb{L} / \mathbb{Q} Galois? Explain.
4. (25 points total; 5 points each part)
(a) Let \mathbb{F} be a field of characteristic zero, and \mathbb{K} / \mathbb{F} a field extension with $[\mathbb{K}: \mathbb{F}]$ finite. Prove there are only finitely many intermediate subfields \mathbb{L} with $\mathbb{F} \subsetneq \mathbb{L} \subsetneq \mathbb{K}$.

Now for the rest of this problem, assume that \mathbb{F} is a field of characteristic 2, and the cardinality $|\mathbb{F}|$ is infinite. As an example, one might have $\mathbb{F}=\mathbb{F}_{2}(u)$, the field of rational functions in a variable u with \mathbb{F}_{2} coefficients.
(b) For the field extension

$$
\mathbb{K}:=\mathbb{F}(x, y) \supsetneq \mathbb{F}\left(x^{2}, y^{2}\right)=: \hat{\mathbb{F}}
$$

calculate the extension degree $[\mathbb{K}: \hat{\mathbb{F}}]$. Here $\mathbb{F}(x, y)$ is the field of rational functions $\frac{f(x, y)}{g(x, y)}$ in two variables x, y with coefficients in \mathbb{F}, and $\mathbb{F}\left(x^{2}, y^{2}\right)$ is the subfield of rational functions of the form $\frac{f\left(x^{2}, y^{2}\right)}{g\left(x^{2}, y^{2}\right)}$.
(c) Show that there are infinitely many intermediate subfields \mathbb{L} with $\hat{\mathbb{F}} \subsetneq \mathbb{L} \subsetneq \mathbb{K}$ (in contrast to part (a) of this problem).
(d) Show that there does not exist γ in \mathbb{K} for which $\mathbb{K}=\hat{\mathbb{F}}(\gamma)$.
(This shows why characteristic zero is needed in the Primitive Element Theorem.)
(e) Show that if we re-define $\mathbb{K}=\mathbb{F}\left(x_{1}, x_{2}, \ldots\right) \supsetneq \mathbb{F}\left(x_{1}^{2}, x_{2}^{2}, \ldots\right)=\hat{\mathbb{F}}$, where there are infinitely many variables in the list x_{1}, x_{2}, \ldots, then \mathbb{K} is an algebraic extension of $\hat{\mathbb{F}}$, but there do not exist elements in \mathbb{K} whose degrees over $\hat{\mathbb{F}}$ are arbitrarily large. Show that, in fact, every element of \mathbb{K} has degree at most two over $\hat{\mathbb{F}}$.
(This shows why assuming characteristic zero was needed in Artin's Lemma 16.5.3.)

