Math 5286 Honors fundamental structures of algebra- 2nd semester Spring 2019, Vic Reiner

 Midterm exam 1- Due Wednesday March 6, in classInstructions: There are 4 problems. This is an open book, open library, open notes, open web, take-home exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (40 points total, 5 points each part) True or False?

True assertions must be proven, and false assertions must be disproven.
(a) For any polynomial $f(x)$ in $\mathbb{F}_{5}[x]$ of degree 1000 , the cardinality of the quotient ring $\mathbb{F}_{5}[x] /(f(x))$ will be 5^{1000}.
(b) The ring $\mathbb{F}_{2}[x] /\left(x^{62}+x^{30}+x^{18}+x^{8}+1\right)$ is a field.
(c) The ring $\mathbb{Q}[x] /\left(x^{62}+15 x^{30}+12 x^{18}+81 x^{8}+6\right)$ is a field.
(d) The ring $\mathbb{Z}[i] /(229)$ is a domain.
(e) For every ring R, the units $R[x]^{\times}$inside $R[x]$ are exactly the constant units R^{\times}.
(f) One has a ring isomorphism $\mathbb{R}[x] /\left(x^{2}+x+1\right) \cong \mathbb{C}$.
(g) One has a ring isomorphism $\mathbb{F}_{2}[x] /\left(x^{3}+x+1\right) \cong \mathbb{F}_{2}[y] /\left(y^{3}+y^{2}+1\right)$.
(h) One has a ring isomorphism $\mathbb{Z}[x] /(2 x-1) \cong \mathbb{Z}[y] /(8 y-1)$.
2. (20 points total, 10 points each part)

Let $R=\mathbb{F}_{7}[x] /\left(x^{3}+x+1\right)$.
(a) Prove that R is a field.
(b) Prove that R contains an element whose multiplicative order is 9 .
3. (20 points) Let \mathbb{F}_{q} be a finite field of size $q=7^{3}$.

Prove that there are exactly 12 subgroups H with $S L_{n}\left(\mathbb{F}_{q}\right) \leq H \leq G L_{n}\left(\mathbb{F}_{q}\right)$.
4. (20 points) For $n \in\{1,2,3, \ldots\}$ define

$$
f_{n}(x):=1+x+x^{2}+\cdots+x^{n-1}
$$

Prove that in $\mathbb{Q}[x]$ one has

$$
G C D\left(f_{n}(x), f_{m}(x)\right)=f_{d}(x)
$$

where $d=G C D(m, n)$ in \mathbb{Z}.
(Hint: What is $G C D\left(x^{n}-1, x^{m}-1\right) ?$)

