Math 5286 Honors fundamental structures of algebra- 2nd semester Spring 2019, Vic Reiner

 Midterm exam 2- Due Wednesday April 17, in classInstructions: There are 4 problems. This is an open book, open library, open notes, open web, take-home exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (40 points total, 5 points each part) True or False?

True assertions must be proven, and false assertions must be disproven.
(a) For a prime p, any irreducible $f(x)$ in $\mathbb{F}_{p}[x]$ that has at least one root in $\mathbb{F}_{p^{d}}$ will split completely in $\mathbb{F}_{p^{d}}[x]$, that is, $f(x)=c \prod_{i=1}^{n}\left(x-\alpha_{i}\right)$ with α_{i} in $\mathbb{F}_{p^{d}}$.
(b) The polynomial $f(x)=x^{33}+x^{32}-x^{2}-x$ splits completely in $\mathbb{F}_{2^{701}}[x]$.
(c) The finite field $\mathbb{F}_{37^{2}}$ is a splitting field over \mathbb{F}_{37} for $f(x)=x^{2}-1$ in $\mathbb{F}_{37}[x]$.
(d) The finite field $\mathbb{F}_{2^{701}}$ contains $\mathbb{F}_{2^{5}}$ as a subfield.
(e) For any positive integers d, e, the compositum $\mathbb{K}_{1} \mathbb{K}_{2}$ within \mathbb{R} of the two subfields $\mathbb{K}_{1}=\mathbb{Q}(\sqrt[d]{5})$ and $\mathbb{K}_{2}=\mathbb{Q}(\sqrt[e]{5})$ is $\mathbb{Q}(\sqrt[d e]{5})$
(f) There exists a field isomorphism $\mathbb{Q}(\sqrt[2]{5}) \cong \mathbb{Q}(\sqrt[2]{11})$.
(g) Every field extension \mathbb{K} / \mathbb{Q} with $[\mathbb{K}: \mathbb{Q}]=2$ is Galois.
(h) Every field extension \mathbb{K} / \mathbb{Q} with $[\mathbb{K}: \mathbb{Q}]=4$ is Galois.
2. (20 points total; 10 points each part)
(a) (10 points) Prove that $x^{15}-17$ is irreducible in $\mathbb{Q}[x]$.
(b) (10 points) Prove that $x^{5}-\sqrt[3]{17}$ is irreducible in $\mathbb{Q}(\sqrt[3]{17})[x]$.
3. (20 points total; 10 points each part) Let p be a prime number.
(a) Give a formula, as a function of p, for the number of monic irreducible polynomials $f(x)$ in $\mathbb{F}_{p}[x]$ of degree 5.
(b) Give a formula, as a function of p, for the number of monic irreducible polynomials $f(x)$ in $\mathbb{F}_{p}[x]$ of degree 15 .
4. (20 points total; 5 points each part) Let $\alpha=+\sqrt[4]{7}$ be the positive real fourth root of 7 , and let $\mathbb{K}=\mathbb{Q}(\alpha)$.
(a) What is $[\mathbb{K}: \mathbb{Q}]$? Prove your answer.
(b) Prove or disprove: there exists σ in $G(\mathbb{K} / \mathbb{Q})$ with $\sigma(\sqrt{7})=-\sqrt{7}$.
(c) Describe the group $G(\mathbb{K} / \mathbb{Q})$ explicitly in this case.
(d) Among all extensions \mathbb{K}^{\prime} of \mathbb{K} for which $\mathbb{K}^{\prime} \mathbb{Q}$ is Galois, what is the smallest possible extension degree $\left[\mathbb{K}^{\prime}: \mathbb{Q}\right]$? Prove your answer.

