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Math 5651 Lecture 002 (V. Reiner) Midterm Exam II
Thursday, March 31, 2016

This is a 115 minute exam. No books, notes, calculators, cell phones, watches
or other electronic devices are allowed. You can leave answers as fractions,
with binomial or multinomial coefficients unevaluated.

There are a total of 100 points. To get full credit for a problem you must
show the details of your work. Answers unsupported by an argument will
get little credit. Do all of your calculations on this test paper.
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Reminders:

Pr(A1 ∪ · · · ∪An) =
n∑
k=1

(−1)k−1
∑

1≤i1<···<ik≤n
Pr(Ai1 ∩ · · · ∩Aik )

S = tni=1Bi ⇒ Pr(A) =

n∑
i=1

Pr(A ∩Bi) =
n∑
i=1

Pr(A|Bi)Pr(Bi) and Pr(Bi|A) = Pr(A|Bi)Pr(Bi)/Pr(A)

cdf F (x) := Pr(X ≤ x),while pdf f(x) =
∂

∂x
F (x)

g1(x|y) = f(x, y)/f2(y), g2(y|x) = f(x, y)/f1(x)

f1(x) =

∫ y=+∞

y=−∞
f(x, y)dy, f2(y) =

∫ x=+∞

x=−∞
f(x, y)dx

When Y = r(X)⇔ X = s(Y ), then f(x), g(y) satisfy g(y) = f(s(y)) · |J | where J := det

(
∂si

∂yj

)

EX =

{∑
k k · f(k) X discrete,∫+∞
−∞ xf(x)dx X continuous.
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Problem 1. (20 points) Let X1, X2 be random variables with joint pdf

f(x1, x2) =

{
2x2 if 0 < x1 < 1 and 0 < x2 < 1,

0 otherwise.

a. (10 points) Are X1, X2 independent? You must justify your answer.

b. (10 points) Defining the random variable Y := X1−X2, compute the pdf
g(y) for Y for all y in R.
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Problem 2. (15 points) Assume that a 10 person committee is chosen from
among 60 women and 30 men, with all possible choices equally likely. Let X
denote the number of women on the committee, and Y the number of men
on the committee.

a. (5 points) Calculate EX.

b. (10 points) Calculate E(X − Y ).

Problem 3. (15 points) Let X be a discrete random variable whose values
lie in {0, 1, 2, . . . , n}. Prove that

EX = Pr(X ≥ 1) + Pr(X ≥ 2) + · · ·+ Pr(X ≥ n− 1) + Pr(X ≥ n)
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Problem 4. (20 points) Let X be a continuous random variable with pdf

f(x) =

c(x2 − 1) if − 1 < x < 1,

0 otherwise,

where c is some constant lying in R.

a. (5 points) Find the value of c.

b. (5 points) Compute EX.

c. (5 points) Compute the cdf F (x) for X.

d. (5 points) If X1, X2 are independent and identically distributed, both with
the same distribution as X, then what is Pr(X1 > X2)? You only need
to write down an explicit integral that calculates it– do not evaluate the
integral.
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Problem 5. (15 points total) Let X be a continuous random variable,
uniformly distributed on the interval [0, 4].

a. (10 points) Let Y be a continuous random variable chosen uniformly on
the interval [0, x] after knowing the value X = x. Compute the conditional
pdf g1(x|y = 1) = g1(x|1) for all values of x.

b. (5 points) Compute the pdf g(z) for Z = X5.
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Problem 6. (15 points total) A group of n people walk into a restaurant,
hand their hat to the hat-check attendant, and after dinner, the attendant
hands back one of the hats uniformly at random to each person.

Let X be the random variable which is the number of people that receive
their own hat. Compute EX.

(Hint: Try writing X as a sum of simpler indicator random variables, that
is, random variables that take on values 0 or 1.)


