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Math 5651 Lecture 003 (V. Reiner) Midterm Exam II
Thursday, March 29, 2018

This is a 115 minute exam. No books, notes, calculators, cell phones, watches
or other electronic devices are allowed. You can leave answers as fractions,
with binomial or multinomial coefficients unevaluated.

There are a total of 100 points. To get full credit for a problem you must
show the details of your work. Answers unsupported by an argument will
get little credit. Do all of your calculations on this test paper.
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Reminders:

Pr(A1 ∪ · · · ∪An) =
n∑
k=1

(−1)k−1
∑

1≤i1<···<ik≤n
Pr(Ai1 ∩ · · · ∩Aik )

S = tni=1Bi ⇒ Pr(A) =

n∑
i=1

Pr(A ∩Bi) =
n∑
i=1

Pr(A|Bi)Pr(Bi) and Pr(Bi|A) = Pr(A|Bi)Pr(Bi)/Pr(A)

cdf F (x) := Pr(X ≤ x),while pdf f(x) =
∂

∂x
F (x)

g1(x|y) = f(x, y)/f2(y), g2(y|x) = f(x, y)/f1(x)

f1(x) =

∫ y=+∞

y=−∞
f(x, y)dy, f2(y) =

∫ x=+∞

x=−∞
f(x, y)dx

When Y = r(X)⇔ X = s(Y ), then f(x), g(y) satisfy g(y) = f(s(y)) · |J | where J := det

(
∂si

∂yj

)

EX =

{∑
k k · f(k) X discrete,∫+∞
−∞ xf(x)dx X continuous.
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Problem 1. (20 points total) Let X1, X2 be a pair of random variables
whose joint pdf has the form

f(x1, x2) =

{
cx21x2 for (x1, x2) ∈ [0, 1]× [0, 1]

0 otherwise,

for some constant c.

a. (5 points) Determine the constant c.

b. (15 points) Compute a pdf g(y) for Y = 2X1 + X2.
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Problem 2. (20 points total)
True or False? Some explanation required for each answer.

a. (3 points) For a continuous random variable X, its pdf f(x) is not uniquely
determined.

b. (3 points) For a continuous random variable X, its cdf F (x) is not uniquely
determined.

c. (3 points) For a discrete random variable X, its pf f(x) is not uniquely
determined.

d. (3 points) For a discrete random variable X, its cdf F (x) is not uniquely
determined.

e. (4 points) There exists a continuous random variable X having a pdf

f(x) =

{
1
12(x− 1) for x ∈ [0, 6],

0 otherwise.

f. (4 points) If (X,Y ) are random variables with a joint pdf given by

f(x, y) =

{
4y3 for (x, y) ∈ [0, 1]× [0, 1],

0 otherwise.

then X and Y are dependent.
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Problem 3. (20 points total) Let X be a random variable with a pdf

f(x) =

{
3
32x(4− x) for x ∈ [0, 4],

0 otherwise.

a. (10 points) Calculate its expected value EX.

b. (10 points) Find a pdf g(y) for the new random variable Y = X5.
Indicate clearly when g(y) is zero.



5

Problem 4. (20 points total) A group of n restaurant patrons named Person
1, Person 2, ..., Person n each give their hat to the hat-check attendant.
Later, the attendant gives them each back a hat, uniformly at random, that
is, all distributions are equally likely.

a. (5 points) What is the probability that Person 1 and Person 2 end up with
swapped hats, that is, Person 1 receives the hat of Person 2 and Person 2
receives the hat of Person 1?

b. (15 points) Let X denote the random variable which is the number of
pairs (i, j) with 1 ≤ i < j ≤ n for which Person i and Person j end up with
swapped hats. Compute the expected value EX.
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Problem 5. (20 points total) Define a pair of random variables (X,Y ) by
first picking X uniformly from the interval [0, 1], and then, knowing the value
X = x, let Y = Bin(3, x) be a binomial random variable with parameters
n = 3 and p = x.

a. (5 points) Write down a joint pdf f(x, y) for (X,Y ), indicating clearly
when f(x, y) = 0.

b. (10 points) Write down a marginal pdf f2(y) for Y , again indicating clearly
when f2(y) = 0.

c. (5 points) Write down a conditional pdf g1(x|2) for X given that Y = 2,
again indicating clearly when g1(x|2) = 0.


