Name:	
r (allio,	

Signature: _

Math 5651. Lecture 001 (V. Reiner) Midterm Exam II Thursday, October 21, 2010

This is a 115 minute exam. No books, notes, calculators, cell phones or other electronic devices are allowed. There are a total of 100 points. To get full credit for a problem you must show the details of your work. Answers unsupported by an argument will get little credit. Do all of your calculations on this test paper.

Problem	Score
1.	
2.	
3.	
4.	
5.	
Total:	

Problem 1. (25 points total; 5 points each) Suppose the two random variables (X, Y) are continuous, with joint probability density function taking the form f(x, y) = y + cxy for $0 \le x, y \le 1$ and f(x, y) = 0 for all other x, y. Here c is some real number constant.

a. (5 points) Determine the constant c.

b. (5 points) Compute the probability that Y > X.

 $\mathbf{2}$

c. (5 points) Compute both of the marginal probability density functions, $f_1(x)$ for X and $f_2(y)$ for Y.

d. (5 points) Are (X, Y) independent? You must justify your answer.

e. (5 points) Compute all of the conditional probability density functions $g_1(x|y)$ and $g_2(y|x)$.

Problem 2. (20 points total) Let X be a random variable uniformly distributed on the interval [1, 10].

a. (5 points) Write down the explicit formula for the probability density function f(x) of X, for all values of x in $(-\infty, \infty)$.

b. (5 points) Write down the explicit formula for the distribution function $F(x) = \Pr(X \le x)$, for all values of x in $(-\infty, \infty)$.

c. (10 points) Define a new random variable $Y = X^4$, and write down the explicit formula for the probability density function g(y) of Y, for all values of y in $(-\infty, \infty)$. **Problem 3.** (20 points total) Recall that a Poisson random variable X with mean μ has probability function $f(k) = \Pr(X = k) = \frac{e^{-\mu}\mu^k}{k!}$ for $k = 0, 1, 2, \ldots$

Professors Sneezy and Grumpy are identical twins that share a teaching position half-and-half: each shows up to teach half the time, choosing randomly which one will teach that day. The only detectable difference between them is in their level of allergies: the number of times that Prof. Sneezy sneezes in an hour is a Poisson random variable with mean 20, while for Prof. Grumpy it is a Poisson random variable with mean 1.

a. (10 points) On a given day, with no other information given, what is the probability that the professor who shows up will *not sneeze at all* in an hour? b. (10 points) If on one particular day you noticed that the professor who showed up sneezed 5 times in an hour, what is the probability that this was Prof. Sneezy who showed up?

Problem 4. (15 points total) Let X be a continuous random variable with probability density function f(x), and let $Y = X^{\frac{1}{3}}$. Express the probability density function g(y) for Y in terms of the function f(x).

6

Problem 5. (20 points total; 5 points each) Let (X_1, X_2) be a pair of random variables uniformly distributed on the rectangular region $[0,2] \times [0,3]$, that is, the region $0 \le X_1 \le 2$ and $0 \le X_2 \le 3$. Let $f(x_1, x_2)$ be the joint probability density function for (X_1, X_2) .

Create a new pair of random variables $(Y_1, Y_2) = (X_1X_2, X_2)$, meaning that $Y_1 = X_1X_2$ and $Y_2 = X_2$. Let $g(y_1, y_2)$ denote the joint probability density function for (Y_1, Y_2) .

a. (5 points) Write down the explicit formula for the joint p.d.f. $f(x_1, x_2)$ for the *original* variables (X_1, X_2) for every (x_1, x_2) in \mathbb{R}^2 .

b. (5 points) Describe explicitly the inequalities that define the subset of the (Y_1, Y_2) -plane where $g(y_1, y_2) > 0$, that is, where the new variables (Y_1, Y_2) have positive density. Sketch this region reasonably accurately on a pair of labelled (y_1, y_2) axes. c. (5 points) Write down the explicit formula for the joint p.d.f. $g(y_1, y_2)$ of (Y_1, Y_2) for every (y_1, y_2) in \mathbb{R}^2 .

8

d. (5 points) Find the probability density function $g_1(y_1)$ for the random variable $Y_1 = X_1 X_2$.

Brief solutions:

1.(a) We must have

$$1 = \int_{x=0}^{x=1} \int_{y=0}^{y=1} (y + cxy) dy dx = \int_{x=0}^{x=1} \frac{1}{2} 1 + cxy dx = \frac{1}{2} \left(1 + \frac{c}{2} \right)$$

which forces c = 2.

$$\Pr(Y > X) = \int_{y=0}^{y=1} \int_{x=0}^{x=y} (y+2xy) dx dy = \int_{y=0}^{y=1} (y^2+y^3) dy = \frac{1}{3} + \frac{1}{4} = \frac{7}{12}$$

(c)

$$f_1(x) = \int_{y=0}^{y=1} (y+2xy)dy = \begin{cases} \frac{1}{2}(1+2x) & \text{for } x \in [0,1] \\ 0 & \text{for other } x. \end{cases}$$

$$f_2(y) = \int_{x=0}^{x=1} (y+2xy)dx = \begin{cases} 2y & \text{for } y \in [0,1] \\ 0 & \text{for other } y. \end{cases}$$

(d) Yes, (X, Y) are independent, since their joint p.d.f.

$$f(x,y) = \begin{cases} y + 2xy & \text{for } x, y \in [0,1] \times [0,1] \\ 0 & \text{else.} \end{cases}$$

is the same, for every point (x, y) in \mathbb{R}^2 , as the product of the marginals:

$$f_1(x)f_2(y) = \begin{cases} \frac{1}{2}(1+2x) \cdot 2y = y + 2xy & \text{for } x, y \in [0,1] \times [0,1] \\ 0 & \text{else.} \end{cases}$$

(e) Due to independence, the conditional probability density functions $g_1(x|y)$ and $g_2(y|x)$ are the same as the marginal distributions, i.e. $f_1(x) = g_1(x|y)$ and $f_2(y) = g_2(y|x)$. (One could, of course, compute these via integrating out the x or y variable from the joint p.d.f. f(x, y).

2.(a) The p.d.f. for a random variable X uniformly distributed on [1, 10] is

$$f(x) = \begin{cases} \frac{1}{10-1} = \frac{1}{9} & \text{ for } x \in [1, 10] \\ 0 & \text{ otherwise.} \end{cases}$$

(b) The d.f. is

$$F(x) = \int_{t=-\infty}^{t=x} f(t)dt = \begin{cases} 0 & \text{ for } x \le 1\\ \frac{x-1}{9} & \text{ for } x \in [1, 10]\\ 1 & \text{ for } x \ge 10. \end{cases}$$

(c) If $Y = X^4$, then as X ranges over [1, 10], one has Y ranging over $[1^4, 10^4] = [1, 10000]$. Therefore g(y) = 0 for y not in [1, 10000]. Since $y = r(x) = x^4$ is increasing for x in [1, 10], with inverse $x = s(y) = y^{\frac{1}{4}}$, having

$$\frac{ds}{dy} = \frac{1}{4}y^{\frac{-3}{4}},$$

one can compute

$$g(y) = f(s(y)) \left| \frac{ds}{dy} \right| = \frac{1}{9} \cdot \left| \frac{1}{4} y^{\frac{-3}{4}} \right| = \frac{1}{36} y^{\frac{-3}{4}}$$

3. Let X be the number of sneezes observed in an hour, for whoever shows up to teach, and let Y be the Poisson parameter (or mean number of sneezes expected per hour) for the teacher who shows up. We are given the marginal p.f. for Y as

$$f_2(y=1) = \frac{1}{2} = f_2(y=20)$$

and the conditional p.d.f.'s for X given Y as

$$g_1(x|y) = e^{-y} \frac{y^k}{k!}.$$

(a) The problem is asking for the marginal value $f_1(x = 0)$, which is $f_1(x = 0) = g_1(x = 0|y = 1)f_2(y = 1) + g_1(x = 0|y = 20)f_2(y = 20)$ $= \left(e^{-1}\frac{1^0}{0!}\right)\frac{1}{2} + \left(e^{-20}\frac{20^0}{0!}\right)\frac{1}{2}$ $= \frac{1}{2}(e^{-1} + e^{-20}).$

(b) The problem is asking for the conditional p.d.f. value

$$g_{2}(y = 20|x = 5) = \frac{f(x = 5, y = 20)}{f_{1}(x = 5)}$$

$$= \frac{g_{1}(x = 5|y = 20)f_{2}(y = 20)}{g_{1}(x = 5|y = 20)f_{2}(y = 20) + g_{1}(x = 5|y = 1)f_{2}(y = 1)}$$

$$= \frac{e^{-20}\frac{20^{5}}{5!} \cdot \frac{1}{2}}{e^{-20}\frac{20^{5}}{5!} \cdot \frac{1}{2} + e^{-1}\frac{1^{5}}{5!} \cdot \frac{1}{2}}$$

$$= \frac{e^{-20}20^{5}}{e^{-20}20^{5} + e^{-1}}$$

4. Since $y = r(x) = x^{\frac{1}{3}}$ is an increasing function for all x, with inverse $x = s(y) = y^3$ having derivative $\frac{ds}{dy} = 3y^2$, one concludes that for all y, the p.d.f. for $Y = X^{\frac{1}{3}}$ is

$$g(y) = f(s(y)) \left| \frac{ds}{dy} \right| = f(y^3) |3y^2| = 3y^2 f(y^3).$$

5. (a) Since the region $[0, 2] \times [0, 3]$ has area $2 \cdot 3 = 6$, the joint p.d.f. for the uniform distribution on this region is

$$f(x,y) = \begin{cases} \frac{1}{6} & \text{ for } (x,y) \in [0,2] \times [0,3] \\ 0 & \text{ otherwise.} \end{cases}$$

(b) The transformation $(Y_1, Y_2) = (X_1X_2, X_2)$ has inverse

$$(X_1, X_2) = \left(\frac{Y_1}{Y_2}, Y_2\right)$$

The inequalities $0 \le X_1 \le 2$ and $0 \le X_2 \le 3$ become $0 \le \frac{Y_1}{Y_2} \le 2$, or equivalently, $0 \le Y_1 \le 2Y_2$, and $0 \le Y_2 \le 3$. This bounds a triangular region of the (Y_1, Y_2) -plane having vertices (0, 0), (0, 3), (6, 3). (c) The Jacobian determinant for the inverse transformation is

$$J = \det \begin{bmatrix} \frac{\partial s_1}{\partial y_1} & \frac{\partial s_1}{\partial y_2} \\ \frac{\partial s_2}{\partial y_1} & \frac{\partial s_2}{\partial y_2} \end{bmatrix} = \det \begin{bmatrix} \frac{1}{y_2} & \frac{-y_1}{y_2} \\ 0 & 1 \end{bmatrix} = \frac{1}{y_2}$$

and therefore the joint p.d.f. for (Y_1, Y_2) is

$$g(y_1, y_2) = f(s_1(y_1, y_2), s_2(y_1, y_2))|J| = \frac{1}{6} \cdot \left|\frac{1}{y_1}\right| = \frac{1}{6y_1}$$

for (y_1, y_2) in the triangular region defined in (b), and $f(y_1, y_2) = 0$ for all other (y_1, y_2) .

(d) The marginal p.d.f. for Y_1 is

$$g_1(y_1) = \int_{y_2=-\infty}^{y_2=\infty} g(y_1, y_2) dy_2$$

=
$$\int_{y_2=\frac{y_1}{2}}^{y_2=3} \frac{1}{6y_2} dy_2$$

=
$$\frac{1}{6} \left[\log(3) - \log \frac{y_1}{2} \right]$$

=
$$\frac{1}{6} \log \frac{6}{y_1}$$

for $0 \le y_1 \le 6$, and 0 for all other y_1 .