Name:
Signature:

Math 5651. Lecture 001 (V. Reiner) Midterm Exam III Tuesday, November 16, 2010

This is a 115 minute exam. No books, notes, calculators, cell phones or other electronic devices are allowed. There are a total of 100 points. To get full credit for a problem you must show the details of your work. Answers unsupported by an argument will get little credit. Do all of your calculations on this test paper.
Problem Score

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
Total: \qquad

Problem 1. (20 points total) Let X be a continuous random variable with probability density function $f(x)=2 x$ for $0 \leq x \leq 1$, and $f(x)=0$ for all other x.
a. (8 points) Compute the expectation $E X$ and variance $\operatorname{Var}(X)$.
b. (6 points) Let $Y=-3 X+7$. Compute the expectation $E Y$ and variance $\operatorname{Var}(Y)$. You must justify your answer.
c. (6 points) Compute the correlation $\rho(X, Y)$. You must justify your answer.

Problem 2. (20 points total)
a. (5 points) Let X be a discrete random variable taking on two possible values $+1,-1$, with probability function $f(+1)=\frac{3}{4}, f(-1)=\frac{1}{4}$

Compute the moment generating function $\psi_{X}(t)$ as a function of t, with no summations in your final answer.
b. (10 points) Consider a particle that begins at 0 on the real number line, and in each second, either takes a step one unit to the right with probability $\frac{3}{4}$, or a step one unit to the left with probability $\frac{1}{4}$.

Let Y be the random variable which is the x-coordinate of this particle after n seconds.

Compute the moment generating function $\psi_{Y}(t)$ as a function of t, again with no summations in your final answer.
c. (5 points) Compute the second moment $\mu_{2}(Y)=E\left(Y^{2}\right)$, as a function of n, simplified as much as possible.

Problem 3. (20 points) Let X, Y be independent random variables for which $E X, E Y, \operatorname{Var}(X), \operatorname{Var}(Y)$ all exist.

Assuming $E X=E Y$, prove that $E\left((X-Y)^{2}\right)=\operatorname{Var}(X)+\operatorname{Var}(Y)$.

Problem 4. (20 points total; 5 points each) Let X_{1}, \ldots, X_{n} be independent and identically distributed random variables, with expectation $E X_{i}=10$ and variance $\operatorname{Var}\left(X_{i}\right)=3$.
a. (5 points) Compute the variance $\operatorname{Var}\left(3 X_{1}-7 X_{2}+12\right)$.
b. (5 points) Let $\bar{X}_{n}=\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)$ denote the sample mean of X_{1}, \ldots, X_{n}. What is its expectation $E\left(\bar{X}_{n}\right)$?
c. (5 points) What is its variance $\operatorname{Var}\left(\bar{X}_{n}\right)$?
d. (5 points) How large must n be, at a minimum, before Chebyshev's inequality implies that $\operatorname{Pr}\left(9 \leq \bar{X}_{n} \leq 11\right)>0.9$?

Problem 5. (20 points total) Let (X, Y) be random variables defined by the following process. First X is chosen with uniform distribution on $[0,3]$, and then after the value x for X has been chosen, Y is chosen uniformly on the interval $[0, x]$.
a. (7 points) Write down the marginal probability density functions $f_{1}(x)$ and $f_{2}(y)$ for each value of x and y.
b. (6 points) Compute the conditional expectation $E(Y \mid X=x)$ as a function of x.
c. (7 points) If one knows that $X=\frac{1}{2}$, what prediction M for the value of Y will minimize the expectation $E(|Y-M|)$ of the absolute value of the error $Y-M$? Explain.

Brief solutions

1.(a)

$$
\begin{gathered}
E X=\int_{x=0}^{x=1} x \cdot 2 x d x=\frac{2}{3} . \\
\operatorname{Var}(x)=E\left(X^{2}\right)-(E X)^{2}=\int_{x=0}^{x=1} x^{2} \cdot 2 x d x-\frac{4}{9}=\frac{1}{18} .
\end{gathered}
$$

(b)

$$
\begin{gathered}
E(Y)=E(-3 X+7)=-3 E X+7=5 . \\
\operatorname{Var}(Y)=\operatorname{Var}(-3 X+7)=(-3)^{2} \operatorname{Var}(X)=\frac{1}{2} .
\end{gathered}
$$

(c)
$\rho(X, Y)=\rho(X,-3 X+7)=\frac{\operatorname{Cov}(X,-3 X+7)}{\sigma(X) \sigma(-3 X+7)}=\frac{-3 \operatorname{Cov}(X,-X)}{\sigma(X) \cdot 3 \sigma(X)}=-1$
2.(a)

$$
\Psi_{X}(t)=E\left(e^{t X}\right)=\frac{3}{4} e^{t(+1)}+\frac{1}{4} e^{t(-1)}=\frac{1}{4}\left(3 e^{t}+e^{-t}\right) .
$$

(b) Note that $Y=X_{1}+X_{2}+\cdots+X_{n}$ where X_{i} are i.i.d. random variables having the same distribution as X above. Hence

$$
\Psi_{Y}(t)=\Psi_{X}(t)^{n}=\frac{\left(3 e^{t}+e^{-t}\right)^{n}}{4^{n}}
$$

(c) Since $\mu_{2}(Y)=\Psi_{Y}^{\prime \prime}(t=0)$ we need to compute

$$
\Psi^{\prime}(t)=\frac{1}{4^{n}} n\left(3 e^{t}+e^{-t}\right)^{n-1}\left(3 e^{t}-e^{-t}\right)
$$

and

$$
\Psi^{\prime \prime}(t)=\frac{n}{4^{n}}\left[(n-1)\left(3 e^{t}+e^{-t}\right)^{n-2}\left(3 e^{t}-e^{-t}\right)^{2}+\left(3 e^{t}+e^{-t}\right)^{n-1}\left(3 e^{t}+e^{-t}\right)\right]
$$

and finally

$$
\mu_{2}(Y)=\Psi_{Y}^{\prime \prime}(t=0)=\frac{n}{4^{n}}\left[(n-1) 4^{n-2} \cdot 4+4^{n}\right]=\frac{n(n+3)}{4}
$$

3. One has

$$
\begin{array}{rlr}
E\left((X-Y)^{2}\right) & =E\left(X^{2}-2 X Y+Y^{2}\right) & \\
& =E\left(X^{2}\right)-2 E(X Y)+E\left(Y^{2}\right) & \text { by linearity of expectation } \\
& =E\left(X^{2}\right)-2 E X \cdot E Y+E\left(Y^{2}\right) & \text { due to independence of } X, Y \\
& =E\left(X^{2}\right)-(E X)^{2}+E\left(Y^{2}\right)-(E Y)^{2} & \text { since } E X=E Y \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y) &
\end{array}
$$

4.(a)
$\operatorname{Var}\left(3 X_{1}-7 X_{2}+12\right)=\operatorname{Var}\left(3 X_{1}\right)+\operatorname{Var}\left(7 X_{2}\right)=9 \operatorname{Var}\left(X_{1}\right)+49 \operatorname{Var}\left(X_{2}\right)=174$ where the first equality used the independence of X_{1}, X_{2}.
(b)

$$
E\left(\bar{X}_{n}\right)=E\left(\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)=\frac{1}{n}\left(E\left(X_{1}\right)+\cdots+E\left(X_{n}\right)\right) .\right.
$$

(c)

$$
\begin{aligned}
\operatorname{Var}\left(\bar{X}_{n}\right) & =\operatorname{Var}\left(\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)\right. \\
& =\frac{1}{n^{2}}\left(\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)\right) \\
& =\frac{1}{n^{2}}(3 n)=\frac{3}{n} .
\end{aligned}
$$

(d) We want

$$
\operatorname{Pr}\left(\left|\bar{X}_{n}-10\right| \leq 1\right)>0.9
$$

or equivalently

$$
\operatorname{Pr}\left(\left|\bar{X}_{n}-10\right|>1\right)<0.1
$$

Chebyshev's inequality says

$$
\operatorname{Pr}\left(\left|\bar{X}_{n}-E \bar{X}_{n}\right|>1\right) \leq \frac{\operatorname{Var} \bar{X}_{n}}{1^{2}}=\frac{3 / n}{1^{2}}=\frac{3}{n}
$$

So we need $\frac{3}{n}<0.1$, that is, $n>30$.
5.(a) The problem gives us the marginal distribution

$$
f_{1}(x)= \begin{cases}\frac{1}{3} & \text { if } x \in[0,3] \\ 0 & \text { otherwise }\end{cases}
$$

and the conditional distribution

$$
g_{2}(y \mid x)= \begin{cases}\frac{1}{x} & \text { if } y \in[0, x] \\ 0 & \text { otherwise }\end{cases}
$$

Hence we can compute the joint distrbution

$$
f(x, y)=g_{2}(y \mid x) f_{1}(x)= \begin{cases}\frac{1}{3 x} & \text { if } 0 \leq y \leq x \leq 3 \\ 0 & \text { otherwise }\end{cases}
$$

and then the other marginal distribution
$f_{2}(y)=\int_{x=-\infty}^{x=+\infty} f(x, y) d x= \begin{cases}\int_{x=y}^{x=3} \frac{1}{3 x} d x=\frac{1}{3}(\log (3)-\log (y)) & \text { if } 0 \leq y \leq 3 \\ 0 & \text { otherwise }\end{cases}$
(b)

$$
E(Y \mid X=x)=\int_{y=-\infty}^{y=+\infty} y g_{2}(y \mid x) d y=\int_{y=0}^{y=x} \frac{y}{x} d y=\frac{x}{2} .
$$

(c) This is asking for the median value m of Y conditioning on the value $X=\frac{1}{2}$, that is, the solution m to this equation:

$$
\begin{aligned}
\frac{1}{2} & =\int_{y=-\infty}^{y=m} g_{2}\left(y \left\lvert\, x=\frac{1}{2}\right.\right) d y \\
& =\int_{y=0}^{y=m} 2 d y \\
& =2 m
\end{aligned}
$$

and hence $m=\frac{1}{4}$.

