Math 5705 Undergraduate enumerative combinatorics Spring 2005, Vic Reiner

Midterm exam 1- Due Wednesday February 9, in class

Instructions: This is an open book, open library, open notes, takehome exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult. Explain your reasoning- answers without justification or proof (where appropriate) will receive no credit.

1. In a standard (American) deck of 52 cards, each card has one of 4 suits, (clubs, diamonds, hearts, or spades) and one of 13 numbers of pips ($2,3,4,5,6,7,8,9,10, \mathrm{~J}, \mathrm{Q}, \mathrm{K}, \mathrm{A})$. Each combination of a suit and number (of pips) occurs exactly once in the deck.

In a game of 5 -card poker (with no wild cards), certain hands have standard names.
(a) (10 points) A flush (possibly straight or royal) is a hand containing 5 cards of the same suit. How many different flushes are there?
(b) (10 points) A full house is a hand containing 5 cards, in which two cards share the same number (and can be of any suits), while the other three cards share a different number (and can be of any suits). How many different full houses are there?
(c) (10 points) Two pair is a hand containing 5 cards, in which two cards share the same number (and can be of any suits), while another two cards share a different number (and can be of any suits), and the fifth card is of yet a different number (and any suit). How many different two pair hands are there?
2. (20 points) Supplementary problem 9 for Chapter 1 on page 29 .
3. Let m, n be two nonnegative integers with $m \geq n$, and let $C_{m, n}$ be the number of lattice paths from $(0,0)$ to (m, n) taking unit steps north or east that stay weakly below the line $y=x$. For example, $C_{n, n}$ is the same as the Catalan number C_{n} derived in Problem 51.
(a) (15 points) Using ideas from the solution of Problem 51 on page 22 , find a formula for $C_{m, n}$.
(b) (5 points) Rewrite your formula for $C_{m, n}$ as an expression that contains no additions or subtractions, i.e. only with multiplications and divisions (e.g. allowing factorials, binomial coefficients, etc.), generalizing the formula

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

4. Prove by any means:
(a) (10 points)

$$
\binom{n}{k}\binom{n-k}{m}=\binom{n}{m}\binom{n-m}{k}
$$

(This is basically Chapter 1 Supplementary problem 8 , but I'm asking for only one solution.
(b) (10 points)

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

(Hints: if you have no other ideas, here are some you might try. In a lattice path from $(0,0)$ to (n, n), where might you cross the line $y=n-x$? In choosing a committee of n people from a pool of n women and n men, how many women might end up on the committee?)
(c) (10 points)

$$
\sum_{m=0}^{n}\binom{m}{k}=\binom{n+1}{k+1}
$$

