Math 5705 Undergraduate enumerative combinatorics Spring 2005, Vic Reiner

Midterm exam 3- Due Wednesday April 13, in class
Instructions: This is an open book, open library, open notes, takehome exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult. Explain your reasoning- answers without justification or proof (where appropriate) will receive no credit.

1. (30 points) Use the technique of generating functions to solve the following recurrence (which appeared in Problem 211(c)). Your answer should be an explicit formula, not involving any summations, that epresses a_{i} as a function of a_{0} and i :

$$
a_{i}=3 a_{i-1}+2^{i} \text { for } i \geq 1
$$

2. (20 points total) Chapter 4, Supplementary Problem 9, on page 99. There are two questions asked there, each worth 10 points.
3. (30 points total) Let a_{k} be the number of k-element multisets chosen from a set with n elements in which the multiplicity of each element is less than m (i.e. the multiplicities can be at most $m-1$). Prove the following explicit formula for $a_{k} \ldots$

$$
\begin{aligned}
a_{k}= & \sum_{\substack{i \geq 0 \\
j \geq 0 \\
m i+j=k}}(-1)^{i}\binom{n}{i}\binom{n+j-1}{j} \\
= & \binom{n+k-1}{k} \\
& -\binom{n}{1}\binom{n+k-m-1}{k-m} \\
& +\binom{n}{2}\binom{n+k-2 m-1}{k-2 m} \\
& -\binom{n}{3}\binom{n+k-3 m-1}{k-3 m}+\cdots
\end{aligned}
$$

(a) (15 points) via the technique of generating functions.
(b) (15 points) via the principle of inclusion-exclusion.
4. (20 points total) Recall from Problem 210 on page 90 the definition of the q-binomial coefficient:

$$
\left[\begin{array}{c}
N \\
k
\end{array}\right]_{q}:=\sum_{\substack{\text { partitions } \lambda: \\
\lambda 1 \leq N-k \\
\ell(\lambda) \leq k}} q^{|\lambda|}=\sum_{i \geq 0} a_{i} q^{i}
$$

where a_{i} is the number of partitions of i with largest part $\lambda_{1} \leq N-k$ and number of parts $\ell(\lambda) \leq k$ (that is, λ has Ferrers diagram that fits inside an $k \times N-k$ rectangle).

For example,

$$
\begin{aligned}
& {\left[\begin{array}{l}
5 \\
2
\end{array}\right]_{q}=1+q+2 q^{2}+2 q^{3}+2 q^{4}+q^{5}+q^{6}} \\
& {\left[\begin{array}{l}
7 \\
3
\end{array}\right]_{q}=1+q+2 q^{2}+3 q^{3}+4 q^{4}+4 q^{5}+5 q^{6}} \\
& \quad+4 q^{7}+4 q^{8}+3 q^{9}+2 q^{10}+q^{11}+q^{12}
\end{aligned}
$$

(a) (10 points) Explain by any means why the sequence of coefficients for $\left[\begin{array}{c}N \\ k\end{array}\right]_{q}$ as a polynomial in q (such as $(1,1,2,2,2,1,1)$ and $(1,1,2,3,4,4,5,4,4,3,2,1,1)$ in the two examples above) is always palindromic, that is, the sequence reads the same forwards as backwards.
(b) (10 points) Recall that one version of the binomial theorem asserts

$$
(1+x)^{N}=\sum_{k \geq 0}\binom{N}{k} x^{k} .
$$

Prove the following q-binomial theorem:

$$
(1+x)(1+q x)\left(1+q^{2} x\right) \cdots\left(1+q^{N-1} x\right)=\sum_{k \geq 0} q^{\binom{k}{2}}\left[\begin{array}{l}
N \\
k
\end{array}\right]_{q} x^{k}
$$

