Chromatic polynomials (Bondo-Munty §8.4)

In an (unsuccessful) aftempt to prove the 4-color Theorem, G.D. Birkhoff (1912) introduced...

DEFINITION: For a multigraph G=(V,E), the chromatic polynomial

T(G,k):= # of proper vertex k-colonings f: V-> {12mk}

sometimes denoted X(G, k) not get clear that
itis a polynomial in k!

or $\chi_{k}(G)$ or The (G) on Bondy-Murty

EXAMPLES

$$\pi\left(\begin{array}{c} K_{1} \\ K_{2} \\ K_{3} \end{array}\right) = \begin{array}{c} b \\ (k-1) \\ k \\ k-1 \\ k$$

$$\pi(k_3) = k(k_1)(k_2) = k_3^2 + 2k$$

2) ACTIVE LEARNING: Prove this ... PROPOSITION: For any tree T= (V, E), one has $\pi(T, k) = k(k-1)^{|V|-1}$ (part of Hw 5,7) e.g. Tr ()= k(k-1)6 3) Tr (G,k) does not always factor completely as $\pi(G,k) = k(k-r_1)(k-r_2)-(k-r_m)$ e.g. $\pi\left(\begin{array}{c} -\frac{1}{2} \\ -\frac{1}{2$ k-26m k-26m F (131) $= k(k-1)(k-2)^2 +$ k(k-1)2 = $k(k-1)((k-2)^2+k-1)$ = k(k-1)(k2-4k+4+k-1) $k(k-1)(k^2-3k+3)$

[= $b^4-4k^3+6k^2-3$]

Tit (4, k) does not factor completely, but is still a polynomial?

THEOREM (Birkhoff 1912, Birkhoff 1946) Let G=(V,5) be a multigraph. (i) π (G,k) = o if G has any loops D (ii) For any non-loop edge e of 6, $\pi(G,k) = \pi(G \cdot e,k) - \pi(G \cdot e,k)$ deletion contraction (iti) If Gis simple, then TI(G,k) is a polynomial function of k, of the form $\pi(G,k) = k^{n} - mk^{n-1} + a_{n-2}k^{n-2} - a_{n-3}k^{n-3} + ... \pm a_{c(G)}k^{c(G)}$ with wefficients atternating in sign, so that

EXAMPLE
$$\pi(\mathcal{L}_{3}, k) = k^{4} - 4k^{3} + 6k^{2} - 3k^{12}$$

(i) should be clear by convention -if G has a self-loop, it has no proper wolongs.

For (ii), let's instead show for a non-loop e-1x,y3, $\pi(G(e,k) = \pi(G,k) + \pi(G/e,k)$ becomse ... I proper k-wolonings] = those with I fhose with I of Gie of the f(x)=f(y) f(x) = f(x)f(x) = f(y) (x) >3 x 34

Por (iii), show it by induction on |E| using (ii). BASE CABE: |E|=0. Then G=0 is a isolated vertices $\pi(G_1k)=k^n=k^{c(g)}$

INDUCTIVE STEP: first note-that m(Ge)= m-1 = m(G)-1 n(G \e) = n(G) = n n(B/e) = n(G)-1=n-1 c (G/e) = c(G)

From (ii), will vanish if e had parallel capes, $\pi(G,k) = \pi(G \setminus e, k) - \pi(G \setminus e, k)$ loops in $G \setminus e$ $= k^n - (mn) k^{n-1} + 0 k^n + 2 k^n +$ with $\hat{\alpha}_{i}$, $\hat{\alpha}_{j}$ \in $\{i,2,3,...\}$ (except maybe $\hat{\alpha}_{c(G)} = 0$) $= k^{N} - m k^{N-1} + \alpha_{N-2} k^{N-2} - \alpha_{N-3} k^{N-3} + ... + \alpha_{c(G)} k^{C(G)}$ where $a_i = \hat{a}_i + \hat{a}_i \in \{1,2,3,...\}$.

There is more one can say about the alternating evellicients a; e11,23,-- 3 appearing in T(G,k)

DEFINITION: Given G=(V,E), pick an ordering E= ien < ez c... < em j of the edges, and then Call a subset BCE a broken circuit if there is some ande C= {ei, < ei, <.- < ei,] mG and B=1 eize...
 $e_{i_1} = C - \{e_{i_1}\}$

THEOREM (Whitney 1932)

TT (G, k) = \(\subsection \) i=0 is and A] | \(\text{Contains no broken circuits} \)

G contains only one cycle $C = \{a_ib_ic_id\}$ so there is only one broken excuit $B = \{b_ic_id\} = C - \{a\}$

A containing no broken circuit	1 4 \	m(C,,k)-
Ø	0]1 = a4	k ⁴
a b c	\\ 4 = a_3	-4k ³
ab ac ad bc	2 2 2 2 2	46k
od cd abc abd acd	$\begin{bmatrix} 2 \\ 2 \\ \hline 3 \\ 3 \\ \end{bmatrix} 3 = 01$	-3k1

Whitney's Theorem is not so hard to prove by induction on IEI using $\pi(G_ik) = \pi(G_ik) - \pi(G_ik), \text{ but let's skip it.}$

There is en interesting interpretation for the sum Ia: THEOREM: For a multigraph G: (V, E), (Stanley's 1973 $\sum_{i=1}^{n} a_i = (-1)^n \cdot \pi(G_3 - 1)$ "(-1)-00lor Thm.") = # acyclic orientations of E

Choice of 000 for each edge creating no directed yeles 1

EXAMPLES

1) For trees T=(V, E), are Saw T(T, b) = k(k-1)^M-1 { set k=-1, multiply by (-1)" (-1) m(T,-1)= (-1) (-2) (-2) $=2^{n-1}=2^{m}$ where m=1E= # acyclic orientations of T, since all orientations are acyclic T_{ϕ}

octo octo octo octo $2^3=8$

(2) For complete graphs, Tr(Ku, k) = k(k-1)(k-2)...(k-(n-1)) { ret k=-1, multiply by (-1) (1) T(Kn,-1) = (-1) (-1) (-2) (-3) ... (-1)

= #acyclic orientations of Kn, since they are in bijection with Imen orders en fr,2,3,...," make $i \rightarrow j$ if $i \neq j$ in the order

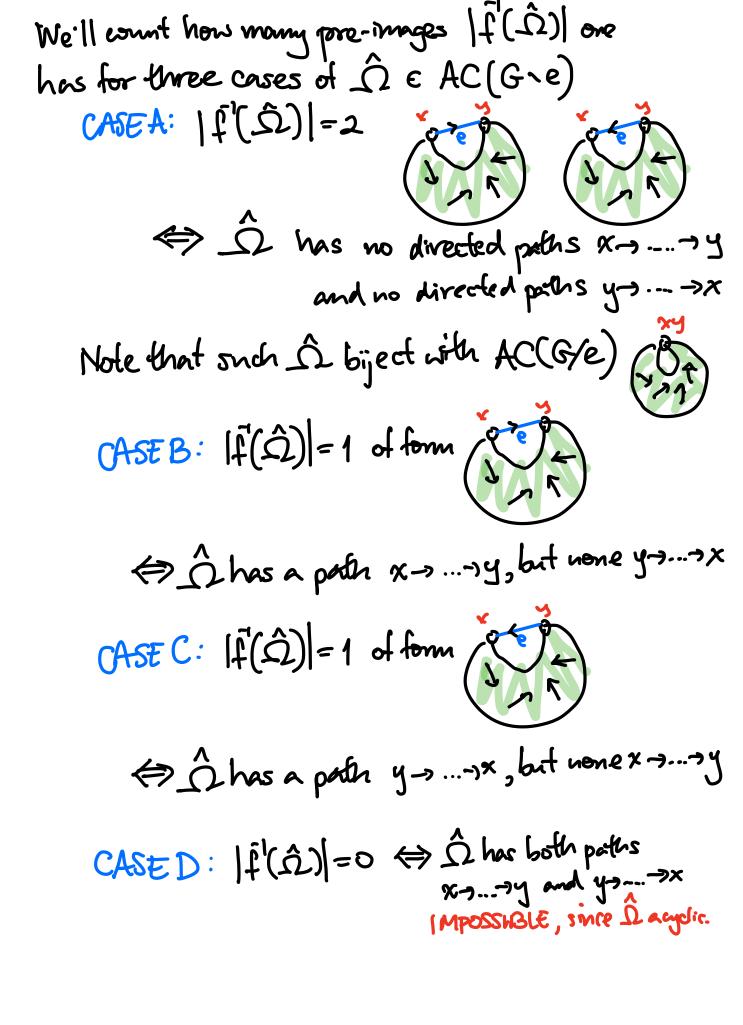
3 0 3 0 3 0 3

proof of Stanley's Thm:

First, since Tr(G, k)= k-ank-ank--... = 5 (-) "ia; ki one has (-1) π(G,-1) = (-1) = (-1) = (-1)

$$= \sum_{i=1}^{n} \alpha_{i}$$

Letting Ac(G):= |{aoyclic orientations of G3|, one can show $ac(G) = (-1)^m \pi(G,-1)$ by induction on m= |E|. BASE CASE: m=0, so G=000 with no edges has $\pi(G_k) = k^n$ (-1) π(G,-1)= (-1). (-1) = +1 = ac(G) INDUCTIVE STEP: M>1. CASE 1: G contains a loop. Then $\pi(G,k)=0$ 80 (-1)" $\pi(G,-1)=0=ac(G)$ CASE 2: G has no loops. Pick a non-loop-edge e=1x143, and use this... LEMMA: ac(G)= ac(G/e) + ac(G/e) proof: Let AC(G):= {acyclic orientations Dot G} Then define a map $AC(G) \xrightarrow{f} AC(G \cdot e) \stackrel{V}{\longrightarrow}$ 1 | Gre restrict 1 to Gre



.

Hence
$$ac(G) = |AC(G)| = D |f'(G)|$$

$$= 2|f|Gin J| + |Gin J| + |Gin J|$$

$$= 2\alpha + \beta + \delta$$

$$= \alpha + (\alpha + \beta + \gamma)$$

$$= ac(G/e) + ac(G/e)$$

The LEMMA FIRM

proving the LEMMA 1

Now we can induct on
$$|E|$$
 be shown $ac(G) = (-1)^m (G_1 - 1)$:

 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$
 $ac(G) = ac(G \times e) + ac(G \times e)$

REMARK: The chrometic polynomial Tr(G,k) has a root at k=m G has no proper vertex m-coloning <-> X(G)>m

e.g.
$$\pi(G, 1) = 0 \Leftrightarrow \chi(G) > 1 \Leftrightarrow G$$
 has an edge $\pi(G, 2) = 0 \Leftrightarrow \chi(G) > 2 \Leftrightarrow G$ is now bipartite \mathbb{Z}_{2}^{2} .

On the other hand,

 $\pi(G, 3) \neq 0 \Leftrightarrow \chi(G) \leq 3 \Leftrightarrow G$ ontemplanar

 $\pi(G, 4) \neq 0 \Leftrightarrow \chi(G) \leq 4 \Leftrightarrow G$ planar

is a replicating of the 4-ador Theorem.

Birkhoff hoped to understand roots of chromatic polynomials $\pi(G, k)$ well enough for G planar to show $\pi(G,4) \neq 0$. But notoody has ever completed this approach, so far,