

There are a few subtleties about GmG*, and lots of cool properties.

EXAMPLES:

G^{*} is always connected, and hence
 G^{*} is always connected, and hence
 sometimes (G^{*})^{*} ≥ Gi (if G was disconnected)

2) G* really depends on the plane embedding of G, not just on the isomorphism type of G.

3 Even when Gissimple, G*may not be, e.g. G1, O2 above are simple but G1, G2 have parallel edges

ACTING LEARNING: In this example of G and G*,

(a) who are the loop edges e in G, and what special property do their dual edges et have in G*?

(b) who are the cut-edges e in G, and what special (isthmuses)

property doubler dual edges e* have in G*?

PROPOSITION: For a plane multigraph G=(V,E) C = E forms a cycle in G $\iff C^* = \{e^* : e \in C\}$ forms the (bond) := le* E*: e*= {F,F'] for (bond) := le* E*: e*= {F,F'] for some FeS, F'ES} associated to some nontrivial portition V= SISS Z both S= S#¢

This leads to an interesting symmetry for spanning trees of G, G*:

COROLLARY: For a connected plane multigraph $G_1 = (V, E)$, $T \subseteq E$ is a spanning tree for G_1 $\iff T^* := je^* : e \in E \setminus T j \subset E^*$ is a spanning tree for G^*

proof of COROLLARY: (ASSUMING PROPOSITION)

Becanse of the PROPOSITION, T contains a cycle C mG \Leftrightarrow T* omits all of the edges $E(S,\overline{S})$ of some nontrivial at V*= SNS, tisconnecting S from S in G* \Leftrightarrow T* does not connect V.* Symmetrically, T does not connect G <> T* contains a cycle in G^{*}. Hence T is a tree in G <> T* is a tree in G* This leads to a pleasantly symmetric 2nd proof of Euler's Formula: Given a plane graph G=(V,E) with and plane dual G*=(V*,E*) with n = |V| $n = |E| = |E^*|$ $f = \# \text{ foces of } G = (V^*),$

pick any spanning tree
$$T \subseteq E$$
 for G_1 , so that
 $T^* := \{e^*: e \in E \setminus T\}$ is a spanning tree for G^* .
But then these two trees have $\int |T| = M|-1 = n-1$
 $|T^*| = |V^*|-1 = f-1$

and
$$e = |T| + |T^*|$$
 by construction.
So $e = (n-1) + (f-1)$
 $= n+f-2$
i.e. $n-e+f=2$

T*= {b,c,f*}

F ConF2

Ey Fy G₩

lebon, contraction & deality

ACTIVE LEARNING: Explain why this holds:

PROPOSITION: For plane dual multigraphs G, G* (V, E) (V, E*) and an edge e-ixyl in G1 that bounds the faces F, F',

one has

Orientations and duality When a plane graph G = (V, E) is given some orientation I to form a digreph D=(V,A), one can also induce a corresponding orientetion Ω^* to form a digraph $D^* = (V^*, A^*)$ via this mule: if x y is oriented as x a y in A then orient et = 2 30 a, at aross like this: r. conter-clochnice

PROPOSITION: Given a plane multigraph G = (V, E) and an orientation Ω , a cycle $C \subseteq E$ forms a directed circuit in Ω \iff the corresponding cut $C^* = fe^* : eeC_1^2 = E(S, \overline{S})$ is directed in $\widehat{\Omega}$ as $\widehat{A}(S, \overline{S}) = \{a^* = (F, F') \in A^* : FeS, \overline{T}' \in \overline{S}\}$ $(ar A^*(\overline{S}, S)).$

PROPOSITION: For plane dual multigraphs 6,6* with corresponding onertoctions D, D*, Ω is an acyclic orientation <>> Ω* is a totally ayclic orientation. even arc a lies in atleast one directed age

EXAMPLE

proof: If Ω is anyclic, for every edge e= ~ o m G directed as a= ~ o in D, the sets S = {zeV: Japath Z ->> x m SZ) > x S = {zeV: ∃apéh y→...→Zm-SL) >y give a nontrivial partition V=SIJS, because Disacyclic. Furthermore, eveny edge going from StoSinG must be directed from StoSin I, again because Ω is acyclic. This means $A(s, \overline{s})$ in Ω on Gis dual to a directed cycle C in Non G* that contains e^* . So Ω^* is totally cyclic. If D is not acyclic, a directed cycle C m Ω on G leads to a directed at $C^{*}=\tilde{A}(S,\overline{S})$ in St on G* Since G* is connected, I at least one arc a* EA* (S,S), which cannot lie in a directed cycle in Ω^* (the cycle couldn't get back from 3 to Sm_n*).

Like acyclic orientations, the totally cyclically
orientations have a deletion-contraction recurrence.
Let
$$TC(G):= \{totally cyclic orientations, \Omega of G\}$$

and $tc(G):= |TC(G)|$.
PROPOSITION: For any multigraph $G=(V,E)$,
 $tc(G)$ can be computed via this recurrence:
 $tc(G)=1$ if $E=\phi$
 $tc(G)=0$ if G contains a cut-edge
 $tc(G)=0$ if G contains a cut-edge
If e is a non-cut-edge, then
 $tc(G)=tc(G \cdot e)+tc(G/e)$.
The take home final exam for the class suggests
a proof of this, similar to part of the proof
earlier that $ac(G)=|facyclic orientationsotG3|$
 $=(-1)^n \pi(G,-1)$