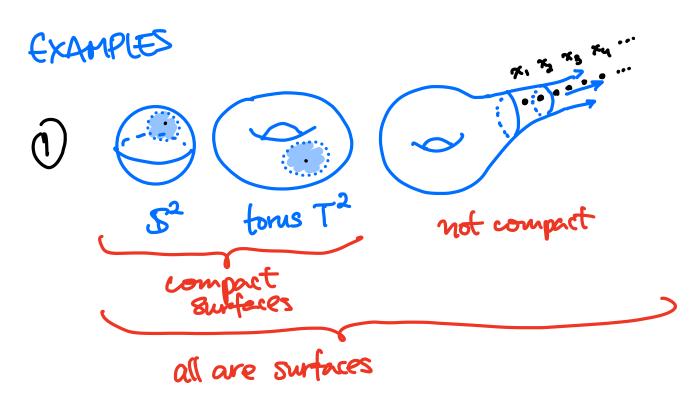
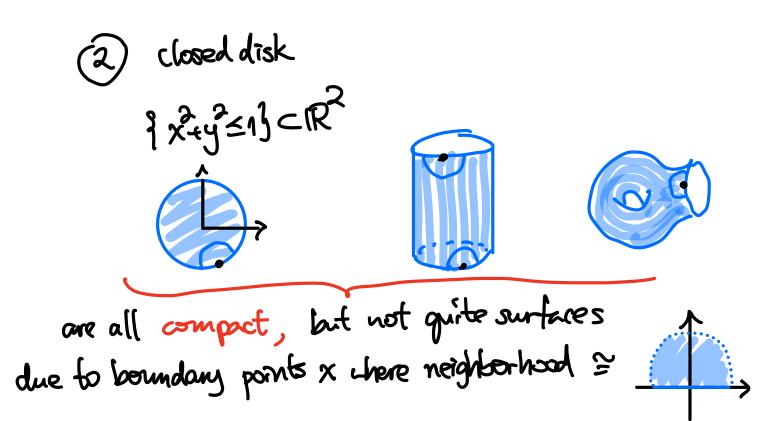
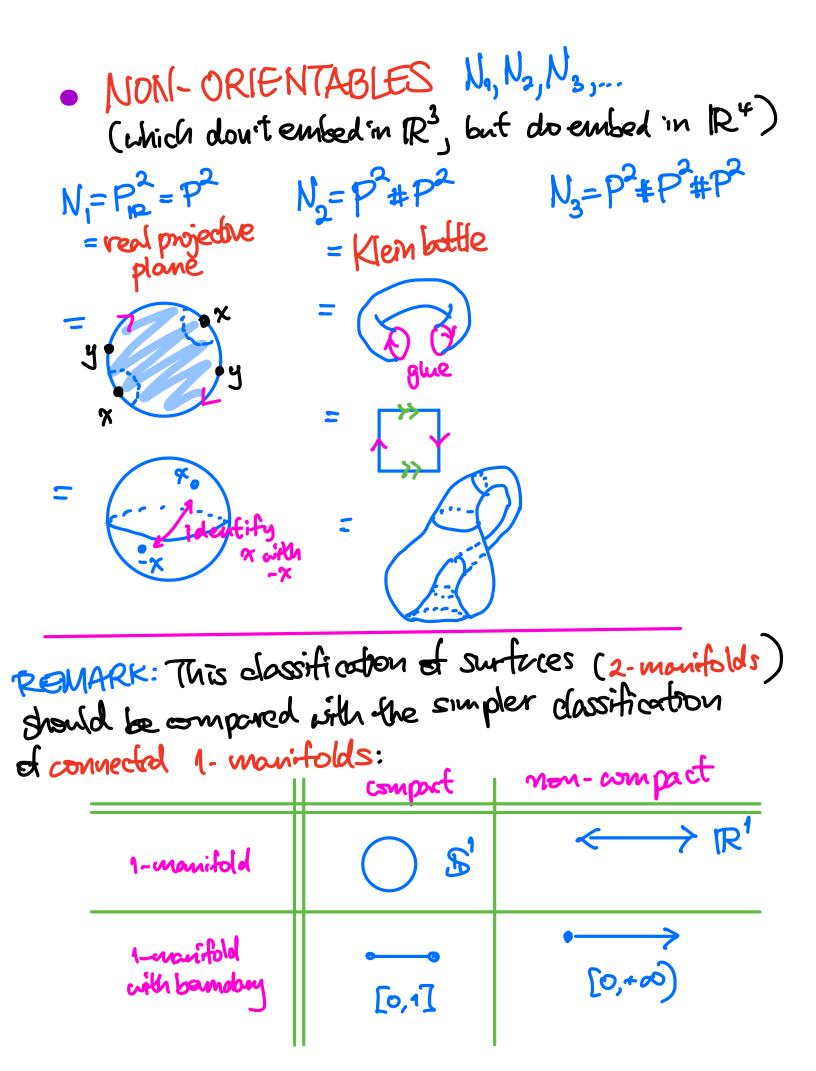


S is compact if every infinite sequence $\chi_{i_1,\chi_{2,2},\dots}$ in S has a convergent subsequence $\chi_{i_1,\chi_{i_2,2},\dots} \longrightarrow \chi_{\infty} \cong S$; equivalently S is closed $\chi_{i_1,\chi_{i_2,2},\dots} \longrightarrow \chi_{\infty} \cong S$; equivalently S is closed and bounded in \mathbb{R}^d $i_1 < i_2 < \dots$



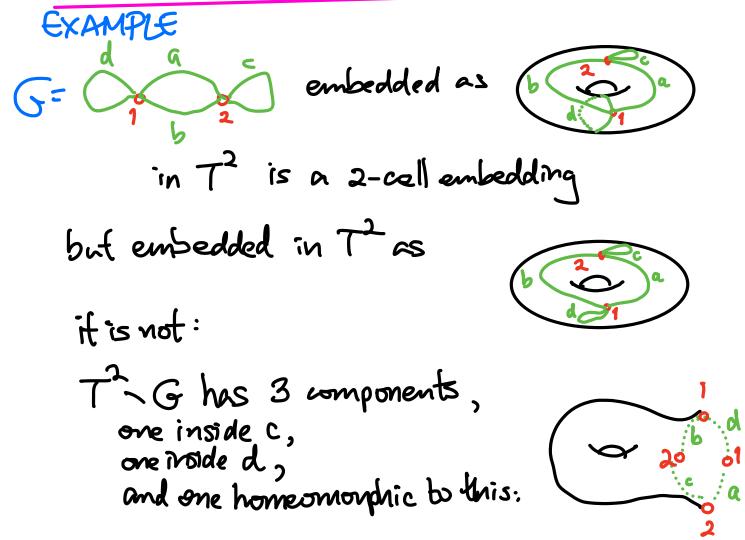


DEFINITION: A compact surface S is orientable if it embeds in IR3 (Jordon-Brower Separation) Every orientable surface S THEOREM divides 1R3-S into two connected components, one bounded (the interior of S) one unbounded (the exterior of S) THEOREM: (Riemann, Poincaré and others late,) (takes work!) 1851 There are two families of connected compact surfaces: • ORIENTABLES: So, S1, S2, S3, Sg = toms with ghandles $S_2 = T # T^2$ $S_{1} = S^{2}$ $S_{1} = T^{2} = 2$ -toms Connected **∽(~) ‡ (~**) glue a



In thinking about the topology of graphs G embedded on surfaces and vertex-colonings of G, they realized it sometimes helps to impose constraints.

DEFINITION: An embedding of a multigraph G=(V,E) on a surface S is called a 2-cell embedding if every connected component of S ~ G is homeomorphic to the open disk x2+y2<1



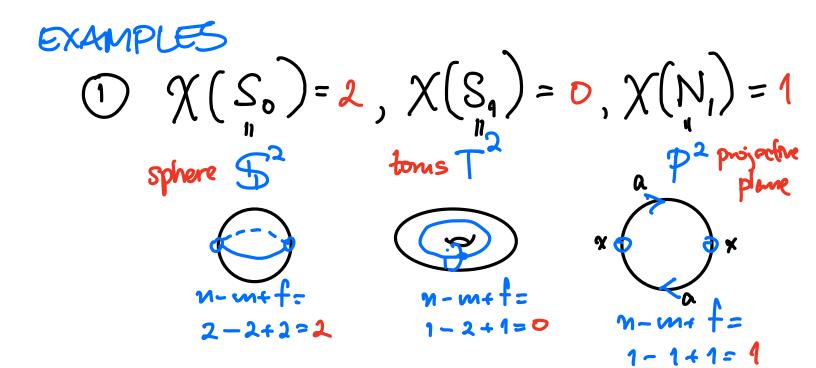
THEOREM: (a) Any embedding of a multigraph (not hand) G on a compact surface S can be made into a 2-cell embedding by adding more edges (but no new vertices).

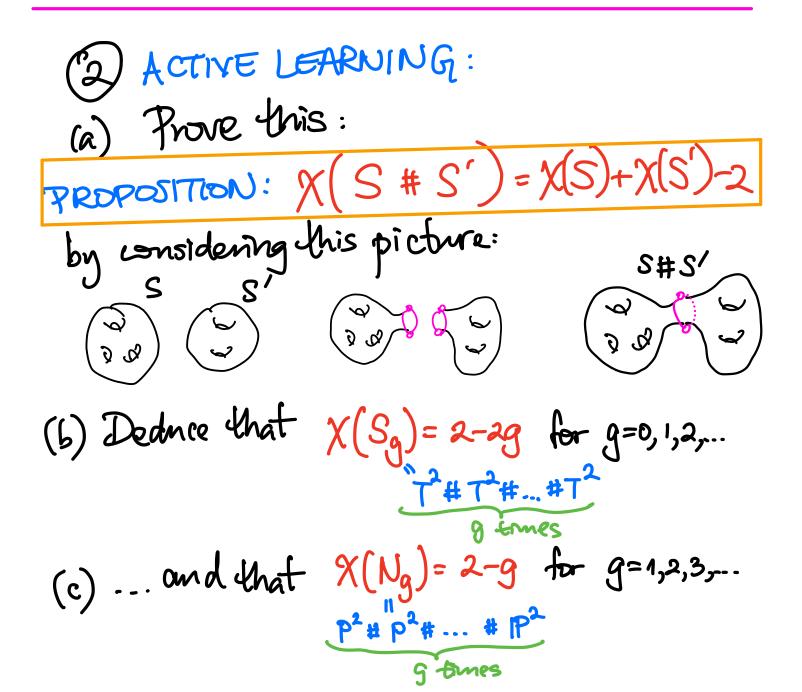
(b) It can even be made into a 2-cell embedding where each component of S\G is bounded by ≤ 3 edges.
 () Low to low if G is evended it may

(c) In porticular, if G is simple, it can be made into a triangulation of S. (every component of S-G bounded by encty 3 edges

not a 2- col embedding EXAMPLES : a 2- cell enhedding, not a trangubbon $G^{++} = h^{\alpha} c$ $G^{++} = h^{\alpha} c$

(2) G = i a 2-cell embedding on S,
not a triangulation
G^f = i a triangulation
G^f = i a triangulation
THEOREM : Ja homeomorphism invariant X(S)
(relatively of a compact Surface S, called its
sophisticated) Enler characteristic, such that every
2-cell embedding of any graph G=(V,E) on S
has
$$n - m + f = X(S)$$
where $n = |V|$
 $m = |E|$
 $f := # of faces = 2-cell components
 $d : S \setminus G$$





Corrected Ry: If G is a simple graph with a
2-aell embedding on a compact surface S,
then
$$m \leq 3(n - X(S))$$

with equality \Leftrightarrow it is a triangulation.
proof: Just slightly modify our proof from the
planar graph discussion. As before,
show $2m \geq 3f$ with equality \Leftrightarrow triangulation:
 $\sum_{2} = \left| \{(e,F): Farface, e an edge boundarg F] \right|$
 $recet$
 $2m$
 $\sum_{n=1}^{2} = \left| \{(e,F): Farface, e an edge boundarg F] \right|$
 $recet$
 $\sum_{n=1}^{2} \frac{|edges e}{|boundarg F]} \right|$
 $recet$
 $\sum_{n=1}^{2} \frac{|edges e}{|boundarg F]}$
 $\sum_{n=1}^{2} \frac{|edges e}{|boundarg F]}$

This constrains which complete graphs
$$K_n$$

can be embedded on surface S, in forms of $\mathcal{X}(S)$.
EXAMPLES:
() We saw on $S_0 = S^2 = 2$ -sphere into $\mathcal{X}(S_0) = 2$,
one can embed $K_n \subset K_2 \subset K_3 \subset K_4 = A$
but not K_5 , since it has $m = (\underline{3}) = 10 \neq 3(n-2)$
 $= 3(5-2) = 9$
(2) On $N_1 = P^2$ -projective plane, with $\mathcal{X}(N_1) = 1$, one can
embed $K_n \subset K_2 \subset K_3 \subset K_4 \subset K_5 \subset K_6 = 10^{10}$ into $(1-2)$
 $hat not K_7$, since it has $m = (\underline{3}) = 21 \neq 3(n-1) = 3(\overline{3}-1) = 18$
(3) On $S_1 = T^2 = 2 - tons$ (5), with $\mathcal{X}(S_1) = 0$, one can
embed $K_n \subset K_2 \subset K_3 \subset K_4 \subset K_5 \subset K_6 \subset K_7 = 10^{10}$ forme can
embed $K_n \subset K_2 \subset K_3 \subset K_4 \subset K_5 \subset K_6 \subset K_7 = 10^{10}$ forme can
embed $K_n \subset K_2 \subset K_3 \subset K_4 \subset K_5 \subset K_6 \subset K_7 = 10^{10}$ forme can
embed $K_n \subset K_2 \subset K_3 \subset K_4 \subset K_5 \subset K_6 \subset K_7 = 10^{10}$ forme can
embed $K_n \subset K_2 \subset K_3 \subset K_4 \subset K_5 \subset K_6 \subset K_7 = 10^{10}$ forme can
embed $K_n \subset K_2 \subset K_3 \subset K_4 \subset K_5 \subset K_6 \subset K_7 = 10^{10}$ forme can
embed $K_n \subset K_2 \subset K_3 \subset K_4 \subset K_5 \subset K_6 \subset K_7 = 10^{10}$ forme can
embed $K_n \subset K_2 \subset K_3 \subset K_4 \subset K_5 \subset K_6 \subset K_7 = 10^{10}$ forme can
embed $K_n \subset K_2 \subset K_3 \subset K_4 \subset K_5 \subset K_6 \subset K_7 = 10^{10}$ forme can
embed $K_n \subset K_2 \subset K_3 \subset K_4 \subset K_5 \subset K_6 \subset K_7 = 10^{10}$ forme can
embed $K_n \subset K_2 \subset K_3 \subset K_4 \subset K_5 \subset K_6 \subset K_7 = 10^{10}$ forme can
embed $K_n \subset K_2 \subset K_3 \subset K_4 \subset K_5 \subset K_6 \subset K_7 = 10^{10}$ forme can
embed K_5 , since it has $m = (\underline{3}) = 21 \neq 3(n-0) = 3(B-0) = 24$

These are examples of the following:
DEFINITION: For a compact surface S,
the Heavood number
$$h(S)$$
 is the upper
baund on n m Kn for it to have a chonce of
briangulating S, i.e.
 $h(S) := \max \{n \in i, 2, 3, ...\} : \binom{n}{2} \leq 3(n - X(S)) \}$
 $m = \frac{1}{2} - 3n + 3X(S) \leq 0$
 $n^{2} - 7n + 6X(S) \leq 0$
 $n \leq \frac{7 + \sqrt{7^{2} + 6X(S)}}{2}$
 $h(S) := \left[\frac{7 \pm \sqrt{149 - 211}XS}{2}\right]$
 $h(S) := \left[\frac{7 \pm \sqrt{149 - 211}XS}$

THEOREM (Heawood 1890) For a graph G embedded on any surface S with X(S) ≤1, the chromatic number of G is at most h(S). (excludes the tongh case $\chi(S) = 2$ i.e. $S = S^2$ or planor graphs even though h(S) - 4? prool: By induction on n= IVI. We'll show that the idea underlying the pool of the 6. when theorem works whenever $\gamma(S) \leq 1$. BASE CASE: $m \leq h(S)$ Noproblem; give each vertex a different color. INDUCTIVE STEP: n2h(S)+1. widsont loss of generality, Gis simple and 2-cell embedded on S, so $|E|=m \leq 3(n-\chi(S))$ $\frac{\text{degree}}{\text{in Gr}} = \frac{1}{n} \underbrace{\sum_{x \in V} \text{deg}_{G}(x)}_{x \in V} = \frac{2|E|}{n} = \frac{2m}{n}$ in Gr $\frac{1}{2} \underbrace{\sum_{x \in V} \text{deg}_{G}(x)}_{x \in V} = \frac{2|E|}{n} = \frac{2m}{n}$ $\leq \underbrace{6(n - \Re(S))}_{n} = 6 - 6 \underbrace{\Re(S)}_{n}$ and

We'll show that this always forces existence of a vertex xo
of degree
$$\leq h(X) - 1$$
, since then by induction, $G - 1x_0 j$
has a proper $h(X)$ -coloring, which extends on xo to one to G.
CASE 1: $\chi(S) = 1$, so $h(S) = 6$
Then degree $\leq G - b \frac{\chi(S)}{n} < 6$
in G so J a vertex of degree $\leq 5 = h(X) - 1$, as desired.
CASE 2: $\chi(S) \in \{0, 1, -2, ...\}$ i.e. $\chi(S) \leq 0$.
If there is no vertex of degree $< h(S)$, we'll
reach a contradiction, since it implies
 $h(S) \leq degree \leq 6 - (b \frac{\chi(S)}{n} \leq 6 - \frac{(b \chi(S))}{h(S) + 1}$
i.e., $h \leq 6 - \frac{(b \chi(S))}{h(1 + 1)}$ where $h = h(S) + 1$
i.e., $h \leq 6 - \frac{(b \chi(S))}{h(1 + 1)}$ where $h = h(S) = 1$.
We'll there is $h \leq 5 + \frac{(5^2 + 1(6 \chi(S) - 6))}{2} = \frac{5 + \frac{(47 - 24 \chi(S))}{2} - \frac{2}{1 + \frac{(47 - 24 \chi(S))}{2} - \frac{2}{1 + h(S) - 1}}$.

Heawood also conjectured his theorem was tight, in the sense that for eveny compact surface S, there is at least one graph G embedded on S with chromatic number h(S). This turned out to be not quite right, but close: THEOREM (Franklin 1930) Graphs & which are 2-cell embedded on the Klein bottle $N_2 = P^2 \# P^2$, having $X(N_2) = 0$ and Heawood number h(N2)=7, actually have chomatic number at most 6 (including G= K6, having chromatic number exactly 6) 1954-1970) 2 many papers, treating varions S, THEOREM (Ringels & Youngs For every compact surface $S \neq N_{2} = Klein bottle$, vientable, non-orientable one can give a 2-cell embedding of on 5. the complete graph Kh(S)

REMARK: The class of graphs embeddable on asniface S is easily seen to be closed under taking minors (= vertex-deletions, edge-deletions, edge-contractions)

Hence the GRAPH MINORS THEOREM of Robertson & Seymour implies this class is always characterized by a finite list of forbidden minors (G1, G2, ..., GrJ. This list is known only for fire surfaces: • for S= \$ ji.e. planar grephs, they awid the minors { K5, K3,3} • for S= P⁺, i.e. projective planar graphs, Chey awid a list of 35 graphs found by Glover, Huncke & Wang 1979 For the toms S: people expect themsands,

and for the Klem bottle N2, tens of thousands (?)