

Euler explains it by abstracting down to a multigraph...

DEF'N: In a multigraph G=(V,E), an Euler walk/trail is a walk from vertex to vertex along edges, using each edge exactly once. It's called an Enter tour/circuit if it starts and ends at same verter.

Q: Which graphs have them? Are they inique in any sense ? (It not, can we count them?)

EXAMPLES

No Enlertours, but yes, some Enler trails. Also not unique. (HEDREM: Let G=(V,E) be a multigraph (Euler) with no isolated vertices. Then G has an Enter circuit (a) G is connected, i.e f x, y \in V = at least one path from x to y along edges of G AND AND (6) eveny vertex x eV has deg (x) even. Königsberg graph EXAMPLES

proof of THEOREM: (\Rightarrow) : Let C be a (directed) Enter circult through G. Then Vx, y eV, I a path from x to y inside C because both xiy touch some edge (5), and (uses every edge. So G is connected, proving (a). Also, for all xEV, the edges e incident to x are paired off entering & exiting as C passes through x, exactly deg (*) times: 0,0,0 C X K

(\Leftarrow): Assuming (a), (b) hold, here is an algorithm to produce an Enler circuit C. Start at any vertex $x_{e} \in V$. Since x_{o} is not isolated, one can more along an incident edge e, and erose $e \in E$, then repeat this until you get stuck at some isolated vertex x, all of whose incident edges were crossed. We claim that necessarily x = xo since every y≠xo has even degree maintained as you enter and exit it:

Thus one has created a circuit C_1 of edges. If $C_1 = E$, we are done. Else repeat this with $G_1 = (V, E \setminus C_1)$, creating a circuit C_2 . Eventually one exhansts $E = C_1 \bowtie C_2 \dotsm \dotsm C_1$.

Whenever Ci, C; share a vertex, they can be server together into a single circuit Cij = CiUCj: mis Cij And since Gis connected, one can eventually sew all of the C: together into one Eulercircuit. What about Euler trails? COROLLARY: Let G=(V,E) be a multigraph with no isolated vertices. Then G has an Enler trail (but no Enler circuit) $\iff \int (a) G$ is connected AND (6) every vertex xEV has deg (x) even except for two of them xo, yo, which will be the start and end of every Enter trail

EXAMPLES

proof of COROLLARY: (=>) An Enler trail TCE again connects all therentices in G, since none are isolated. And adding an extra edge es= ixo, yoy to t gives an Enler circuit C=TUles ? in Guieny := (V, Ewien) that proves (b).

(⇐) Conversely, if G=(V,E) satisfies (a),(b), then Gulest-(V, Einsteal) avill have an Euler circuit C, and then T:= C-reg will be an Euler trail in G.

prected Ever circuits and de Bnijn sequences A directed multigraph D = (V, A) (or digraph) versies arcs DEF 'N: has each arc a f A an ordered pair a = (x,y) thought of as a directed edge (R) ~ (y) EXAMPLES $\mathcal{D}_{1} \bigoplus_{i=1}^{\infty} \mathcal{D}_{2}^{=} \bigoplus_{i=1}^{\infty} \mathcal{D}_{3}^{=} \bigoplus_{i=1}^{\infty} \mathcal{D}_{4}^{=} \bigoplus_{i=1}^{\infty$

DEF'N: A directed circuit C in a digraph is a set of arcs $x_0 \rightarrow x_1 \rightarrow x_1 \rightarrow \dots \rightarrow x_{k-1} \rightarrow x_k = x_0$, that is, forming a circuit that respects the anows:

ACTIVE LEARNING. Which of these dignerates has a directed Eiler tour?

THEOREM: Let
$$D = (V, A)$$
 be a digraph with
no isolated vertices. Then
(a) the underlying (undirected)
freph $G = (V, F)$
is connected
Entertour (i) (i) V xeV one has
indeg (x) = outdegs (x)
(b) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V xeV one has
indeg (x) = outdegs (x)
(c) V x

De Bnijn seguences

-it's not apparent that they relate to directed Enter tours, but we'll see how they do!

DEFIN: A de Bnijn sequence - on k letters {0,1,2,...,k-1} ("k-ary") - of order n

is a circularly read sequence of k letters (a, a, ..., a, m) in which each possible word of length n oppears and once as a consecutive subword.

EXAMPLE with k=2 and n=5 stoken from Wikipedia: 7 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0As bc 4c 70 5H 4b Jb KH 7c 5D 8H Qb Ac 65 7H AH 71 0 1 0 0 1 1 1 0 1 1 0 1 14s 6H 85 7H 8b 8c KS b5 3H 6c 4H TC 3c QH 35 9c

The mapping to 32 cards from a deck, with 0 --> red cards 1 --> black cards lets one do a frick of Persi Diaconis:

He tosses the 32 card deck, prepared in this circular order (bound with a nubber bound) into the andience, asks a ten people to do a few usual cits (break deck in 2, put bottom half on top), then asks next 5 people to take the vext card off the top. He asks those among the 5 holding black cards to stand up, and then greases all 5 peoples' ands.

Do de Bruijn sequences on kletters of order n exist for all k and n? If so, how to construct them?

Theopen if we define the definition of the definition in the sequences
$$(N, definition (N, defi$$

EXAMPLES

proof of THEOREM : (by EXAMPLE) In D5,4, one has these 2 kinds of vertices x: 2=5 7 Corder 5-ang indeg(x)= ontdeg(x)= le in both cases. And 'Pie,n is convected because one ran always get from x toy in n-1 steps, e.g. in D3,6 k=3 20210 020121 22/020 210201 102012 $22102 \rightarrow 21020 \rightarrow 10201 \rightarrow 02012 \rightarrow 20121 \rightarrow 01210$ 11 X

Hamilton cycles and paths Sound very similar to Enter tours and walks, but behave surprisingly differently. DET N: In a (simple) graph G = (V, E), a Hamilton path is a walk from vertex to vertex dong edges e in E that visits every vertex x EV exactly once (but not necessarily every edge). If one concomplete it by one last step along an edge to start and end at the same vertex, it's called a Hamilton cycle, and G is called Hamiltonian in this case.

 \Leftrightarrow

Hamiltonian?

Q

Hamiltonian?

DEFIN: Say a simple graph G=(V, E) is Bondy Unital closed if Yx,yEV with dc(x)+dc(y)≥ [V] one already has ixiyget. Say G is a Bondy-Chatal closure of Gi if G is B-Colosed and Z graphs on vertex set V $G = G_0 \subset G_1 \subset \dots \subset G_{t-1} \subset G_t = \overline{G}$ with Giti= Giulxi,yi] having dG(xi)+ dG(yi)≥ [V[.

PEOPERTION: The B-C closure of a graph G is unique.
proof: Consider BC closures
$$\overline{G} \neq \overline{H}$$
 of \overline{G}_{1}
 $G = G_{0} = G_{1} = G_{2} = \dots = \overline{G}$
 $G = H_{0} = H_{1} = H_{2} = \dots = H_{s} = \overline{H}$
with $G_{in} = G_{i}$ views and $r + s$ minimal.
 $H_{in} = H_{i} = i$ find
Since f_{1} could be added to $\overline{G} = H_{0}$, it could also be
odded to G_{1}, G_{2}, \dots and bence f_{1} must be an
edge of \overline{G} , which is B-C closed. This means
 $f_{1} = e_{1}$ for some i , and we can create a shorter
picture:
 $Guif_{1} = Guif_{1} = Guif_{1} = G_{1} \cup H_{1} = \dots = G_{1} \cup H_{1} = \overline{G}$
 $H_{1} = H_{2} = \dots = H_{s} = \overline{H}$.
This contradicts $r + s$ being minima [. M
 $CORDUART: A simple graph G is Hamiltonian
 \Leftrightarrow its B-C closure \overline{G} is Hamiltonian.
 $e_{0} = \int_{0}^{\infty}$ had B-C about $\overline{G} = K_{0}$ which is
Hamiltonian$

