
 

Matchingtheory
BondyMurtyChapter5 and SchrijverChapter3

We'll learnhow to relatethese seeminglyunrelated

optima max mins
and compute some of them quickly

DEFINITION For an undirected simplegraph
G YE

eg G 1 0 0

G max C1 C V an independentset

no
Easts glee

havebothendpoints
x yEV

3
012 00 or 01 0 0

p G min IF Fc E an edge cover

ie.everyxeV
is incident

to at least
one edgein F

4
110 0

or 170



T G min 1W WCV a vertex cover

ieeveryleetisincident
to at least

onevertexinW

4

Egoor 01 0

VG max IMI MCE antacid'ng

i.eu eVliesinmore

thefocus
of than one ee

M

matching 3
theory Eto or 170 0

There are some surprising relations

THEOREM If G has no isolatedvertices then
Gallai1958

a U G T G e.g 3 9
mamatching minertexcover

e.g 5 Ib fE.ie PGecover
and one has

G ECG v1 G p G
eg 3 4 7 3

fence one hasequality in
a equality in b



proof For a note every vertex
cover WCV

needs at least one endpoint fromeveryedge
e

manymatching MCE 01 00

IMI IW MW

so max min

For b note every edge cover FCE

needs at least one edgeincidentto every
vertex x

in any independent
set CCV

ICI IF C F 8
0 0

so max min

For a note that

a subsetWCV is avertex cover
C V W is an independentset

Eto 5 0 0

C V W
W

Iw V1 14

sonata M Ing



For d we'll show thetwoinequalities

V G p G V1 Pick a max sizematchingMCE

so w G IMI For eachof the V1 20 G vertices

unmatchedbyM add anedgeincidenttox givingan

edge cover F with

a

IF a 14 206 v1 v G

So
p G

max IF edgecovers F V1 U G

o i e G p G
IF

249
a p G v1 Pick a min sizeedgecover FCE

sopG
Fl For each xeV deletedeg x 1

edgesof Fincident
to x obtainingamatchingM

with IM p a Eyes
1

p G Idegelx W

p G 2pG
14 v1 p G

Hence 2 G max MI matchingsMY

V1 p G
i e 2 G P G v1 Me



CONCLUSION
Weonlyneed

to compute one outof
Ever

one outof.tk iPulGrter

It turns out that computing α G is NP complete

for general graphs G on Karp's list 1972

of 21 NPcompleteproblems

On the otherhand finding a max
sizematchingM

and hencecomputing w G can be done

in polynomial time

We'll also see that thetheory is easier for

bipartite G where we'll show

u G T G

G p G
V1 G

141 V G

so that all 4 can becomputed in

polynomial time



How to tellwhen a matching MCE

is not maximum sized i e IMI W G

One obvious way it can happen

DEFINITION Given G V E and a

matching MEE a pathP in G is

M alternating if italternates
edges in not in M

M augmenting
if additionally itsendpoints

are M unmatched

Given an Maugmenting pathP one

augmentsM along P byreplacing
M with

M M AP i e swappingedgesof P

that are in not in M NOTE IMF IM 7

EXAMPLE
In G M here the paths0

12 PnB B are all M alternating
0 0

0

10
butonlyP3 is M augmentingo o o

0 0 00 0 0

ooooh M MaP
B



A very surprising
and useful

PROPOSITION For any graph G V E

Berge 1957

a matching MCE is max sized

anyM augmenting pathsP

prof This should beclear since an

M augmentingpath P wouldgive M MΔP

with IM MI 1

Suppose M is not max sized so

some matching M'with 1M 1Mt

We'll showwhytheremust
exist some

M augmentingpathP Consider
the

multigraph V MDM in which

every xeV has deg x 2

O O O O O O O O O O O O

O O O O O O O O O O O O

O O 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0
no

0 0
1,0

0
OH YIM



ACTIVE LEARNING Explainwhy
a Every x EV has degy x 40,1 29

b Everyconnectedcomponent

is either a path or a cycle

IT
00 00

c In fact theymust all be

Malternating paths and M alternating even
m cycles

O O

M aggregating
O O O

O O O O
0 0

10 0 0 of 0 0

o o o o o

O O O O O O

O O O O O of 0 o

o
o

d IM IMI at least one is an M augmentingpath
a



OK so how do we algorithmically

findM alternatingpaths or show none exist

It's easier land faster in the bipartite case

PROPOSITION For G E bipartite

and MCE anymatching
create a

digraph D XWY A where ares go

E 9

motion9
directedpaths
PinD from

Then M augmenting
paths P in G

Mentee Tedx
to M unmatched

proof Ibgexample
vertices y MY

G M O D

0
ms 0

1 0
P

crepate

0 0 0 y

Y



no pathsfrom
O M s o anyunmatched EX

8 my
0 o

toanyunmatchedye
ms

augment create a Y M is maxsizedalongP o O new D 0
w G 3

This gives us Kuhy'S Hungarian algorithm
afterKonig andEgerary

to find a max sizedmatching in bipartitegraphs G

Start with Mo

UsingMi directtogetDi.Ifdirected pathsP in Di fromMi
unmatched FX

to Mi unmatched y Y

use P to augmentMi creatingMitt

Repeat
Otherwise stop since Mi is max sized

Thisalgorithm helpsoptimizekidney transplants

see NYTimes Feb18 2012 60Lives 30Kidneys AllLinked

about a longM augmentingpath in
G

kidneydonors Y relipient



t alsohas a theoretical consequence

WROLARY For bipartite G V G T G

Konig Germany matching Etexcover

and hencealso.uahE PEewent1V YE co1
proof We'vealready seen 2 G T G

So given a max sizedmatching M
in G it's

enoughtoexhibit a vertex cover WCV with W MI

sinie that shows G u G

Use M in G XwY E tocreatedigraph D as before

and let W xeX.in hn.tTtaffhd w YEY
reachable

homuntened
vertices vertiles

EXAMPLE
Eyo 0

G M L W



We claim W is a vertex cover since

for edges not in M if x W then

is reachable so y is reachable and thenyEW

for edges in M if x W then

is reachable so itmustbereachedthroughy

so y is reachable and
then yew

To see that IW IMI first note that every

vertex in W lies on some edgeof M

if yew and yeY then ymust be
matchedin M

bymaximality of M sincey is
reachable

if xeW and x X then x notreachable

implies in particularthat x
is notMunmatched

i e x is M matched

However notethat two vertilesof W cannot
lie

on the same edge of M unrefanable Fainable

Henie we get an injectivemap W M
v a unique

edgeofM
th

and IWI MI TE



This has an interesting consequence
COROLLARY P Hab's Marriage

Theorem

A bipartitegraph G V E has
by

a matching MEE thatmatches all of

X EX I NCD I 1 11

Eneghborsof X inG

yFY e xy et

EXAMPLES

M o

EFF.ci

YES no
small

proof If Mmatches all of X then
X C N x the map X N X isinjective

x miqe.SE
ith

showing X INCX



If no matchingMmatchesallof X

then 1 1 p G
T G byKonigEgenary

Eening mtertexcover Them

so a vertex cover WCV with W 1 1

Let X X W

Thenevery yeN X lies inW Ex Jew

Hence W 1
a N

1 1 IW i nw INK'll
1 1 1 1 IN ll

i e 1 1 1 1

11 1
must be

Hall's Theorem itself has a number of

consequences



COROLLARY Let G V E be a bipartite
by

multigraph and d regular for d 21

Then a 1 1 M
b G has a perfectmatching M

E matches all vertices

c Infact one can write

E M WMaw WMd

as a disjoint union of d perfectmatchings

ACTIVE LEARNING

We build a 3 regular bipartitemultigraph

G V E for1 1141 4 with audience participation

I Then youdecompose
E M WMWMs

for 3 perfectmatchings
Mi

Yy 010 M 0 0th

6 v 8 0

e s

y
a



proof a follows
ftp.pyagh yEdegasl dixt

1 1 141

b will follow if we cancheckHall's hypothesis

that X'ex INCXY 1 11

Do this by countingtwoways some
edgesout

YET tox
edges x y FE from

to ye NE
Idegaly
YENX

NM
d IN x

Exidge
d exiled ink'll

1 4 IN X Id Ix

s follows from b byinduction and with

easybase case d 1
where G M Te

REMARK A similarmethodapplies to prove
Bondy Murty's Exer 5.2.8 theBirkhoff vonNeumannThm



Maxweight bipartitematching Shorts fy

GivenG XWY E a bipartitegraphand

weight w E Rzo want tofind MCE

a matchingthat maximizes w M Eye

NOTE It willnotalways be of size 2 M

EXAMPLE
has 0 G 4

E F E E E3

III IT ET III
but

M f has w M 2 4 3 9
1 3 beats themall



DEFINITION Call a matching MEE extreme if

it has max weight w M amongallmatchings
in

G of the same size

EXAMPLE M My My areextremeabove

Kykygave a test generalization of his Hungarian

algorithm that finds at least one extreme

matching Mo Mi Ma Muca of each size

Mil i for i 0,1 2 W G

Thenpickingwhichever M maximizes w Mi solvestheproblem

Kuhn'salgorithm
start withMo as before

Given Mi direct G as a digraph D XWY A

as before i e
09 if x y M

09 if xy FM

But now use theweights w E IR o

also assign the arcs lengths l a

gle oy

we



Nowtrytofind a directedpath P from an

Mi unmatched xeX to some M unmatchedyeY

If such a P exists augment Mi along P

to obtain Miti

If nosuch Pexists stop because Mil
u G

Whydoes it work

PROPOSITION If Mi was extreme thenso isMin

proof AssumingMi was extreme letME be

any extremematching with Mit Kitt
Wewant to

show w M it w Miti so Mit isalsoextreme

Notethe multigraph Mi n Mit contains some

Miaugmenting path P by our oldproofofBerge's
Thm

We also know that unaugmentingMit alongP

gives a matchingMi of size i whichtherefore
must have w Mi w Mi



We know l P ICP byconstruction

Note w Mit Mi ICP

w MI w Mi ICP

Henie w M'i wMi ICP
w Mi ICP

w Mi ICP w Mi Ex

An issue remains Can onequickly find directed

paths in thedigraphD of minimum
lengthwhen

some arcs have negativelength

YES there is an easy breadth first type
of

algorithm called the Bellman Fordalgorithm1956 I seeSchrijver 1.3
tofindshortestdirectedpaths to x xtV

in a digraphD VA with arclengths l A IR

as long as I leadsto nodirectedcycles C inD of

negativelength C 0



To find shortestdirectedpaths from xo V to all

other xeV for some D V A with l A IR

proceed in stages labelingeach with

the shortest path length 7 x reashing it so far

starting with all labels 711 00

STAGE 0 Label Xo as 7 o 0

STAGE it Proceedalong arcs ofform 0
09

where x had x updated in stagei

gy
Update Xly min y 7 Xi Aai

with Xiupdated instage

EXAMPLES

t.EEi.oEIiiI.oEiiiI
STAGE0 STAGES STAGEL STAGE3

if if.ir iifi iifi i
STAGEO STAGE1 STAGE2 STAGES STAGEY FEETates



LEMMA During Kuhu'salgorithm

thedigraphs D never havedirectedgoes C

with l C so

proof Given the extremematchingMi in G

if the digraphD itcreated hadsuch a

cycle C then one could swap Mi'sedges

in MinC with those in C Mine to get

a matching Mi with w Mi w Mi

Contradiction Ke

o 0 c

c
o wfiltwle.twes oco

wlea7 weg
W l2 wG wk6

O o
wMi

aces w Mi
AC

0
0 0

w Mi

MiMi



Aglimpseof non bipartitematching theory

We sawthesetwomatchingtheorems for bipartite G

THEOREM KonigEgerary
G bipartitehasmthEz.ly ecover

THEOREM Hall
allverticesmatched

G XWYE bipartitehas a perfectmatching

1 1 14 and X ex one has N x X

Both have interesting generalizations
to nonbipartiteG

THEOREM TutteBergeformula
seeSchrijuer55.1

Anysimple graph G V E has

G
v

14 14 Holpdonants d u

THEOREM
Tutfeist 1 factorTheorem

BudaYay
Anysimple graph G V E has a perfectmatching

UEV oddconnected
componentsof a u

U

Onecan showTutteBergeFormula Tutte's1 faitorThm

Showing that theyimplytheirbipartitespecial
cases

also takes a little thought skippedhere



Edmond'sblossomalgorithm for
max sizedmatching in nonbipartiteG

E How to findM augmentingpaths
P inG

when G is non bipartite

7 a
e

g.mn
Etfd

o o o Q unmatched

Finding shortestdirectedpaths
in a

certaindigraphD are stillrelevant

PROPOSITION Let U M unmatched
vertines ofG

nothard N U neighbors of 4

andcreate a digraphD V A where A has

ares a likethis If
notinM

Then shortest paths from U to
N U either

are M augmentingpaths jQu
if they never revisit vertices or hop over visited

vertices

GOOD news lets usaugment Malongpath



or give rise towhatEdmond called

blossoms odd cycles C withthis matchingpattern

FEE
good

seems like
BADnews

How toeliminate theblossoms we
encounter

FIRST make sure theblossom's
cycle C has

an M unmatched vertex
to byshifting

the

matching M along the stem

qo
o o o o ok.FI

shift Malongthe stem

o o o o o ogt.FI



SECOND contract down C to a single vertex toC

forming G C withmatching M C

Then apply this fait
PROPOSITION G has an Maugmentingpath P

GC has an M C augmentingpathP

proof idea

An M augmentingpath P in G either

misses Centively so it persists in G C
or

P hits C and
enters it along a non

M edge

so that GC has an
M augmenting path P

thatends at xo C

go
no

G

aa oiE.no
50

0 0
1

700



An M C augmenting pathP in Glc

eithermisses to c entirely so it persists in G

or ends at xo C and there is exactly
one

way
to expand it to an M augmenting P in G

that ends at Xo

00

q.FI o o

This givesEdmond'sBlossomAlgorithm
1961

to compute w G and find a max sizedmatching

M M G V E in c NI IEP steps

At eachstep it runs a depth first search for a

U N U M alternatingpath
P which is either

M augmenting or it finds ablossom C to
contract

and then works in G C

see SchrijuerChap5


