This is a vast generalization of Kuhn's
Hungarian algorithm, that angments flow in a
network rather than size of a matching.
DEFINITION: Let
$$D = (V, A)$$
 be a digreph
with 2 distinguished vertices s , $t \in V$,
source target
(estime)
and call $f: A \rightarrow \mathbb{R}_{\geq 0}$ on set flow if
 $\forall x \in V - is, t \end{cases}$ one has $\sum_{v \in S} f(a) = \sum_{v \in S} f(a)$
arcs

DEFINITION: Given a capacity function $c: A \rightarrow R_{20}$ soy that a tion f observes c if $f(a) \leq c(a)$ if $a \in A$. The value of the flow f is $v(f) := \sum_{aros a} f(a) - \sum_{aros a} f(a)$. e.g. f above has v(f) = 5+2=7 so a° so a° so a°

PROPOSITION: For any SeV with seS, t&S and any s-t flow f: A-, IR20, one has (i) $v(f) = \sum_{\alpha v \in s} f(\alpha) - \sum_{\alpha v \in s} f(\alpha) = \sum_{\alpha \in A(S,S)} f(\alpha) - \sum_{\alpha \in A(S,S)}$ x a es x a y es es es es and if fobeys c: A -> Rzo, then (ii) $v(F) \leq c(S,\overline{S})$ with equality \iff $\begin{cases} f(a)=c(a) \forall a \in A(S,\overline{S}) \\ \text{"the cut is saturated"} \\ AND \\ f(a)=0 \forall a \in A(\overline{S},S) \end{cases}$ "no bock-flow"

$$= \sum_{x \in S} \left(\sum_{x \neq a} f(a) - \sum_{x \neq a} f(a) \right)$$

= $\sum_{a \in A} f(a) \left(\sum_{x \in S:} f(a) + \sum_{x \in S:} f(a) \right)$
= $\sum_{a \in A} f(a) \left(f(a) + a \in A(S,S) + x \in S:$
 $x \neq a$ $x \neq a$ $x \in S:$
 $x \neq a$ $x \neq a$ $x \in S:$
 $x \neq a$ $x \neq$

Q: How to find a max-valued flow f obeying c? Ford & Fulkerson's augmenting flow algorithm: (1956) Given D= (V,A) with on s-t flow & obeying c, create a digraph $D_f = (V, A_f)$ as follows: for each arc "o to m A, create) the same arc and in Af if f(a) < c(a) the opposite arc and in Af it o < f(a) both arcs if y if o < f(a) = c(a) Then do a breadth. first search for a drected s -> ... -> t path Pin' Df. If such a Pexists, augment the flow along P by E f(a) < e(a) or o in P (x a y where $E := \min \left(\frac{c(a) - f(a)}{c(a)} \right)$ x a vy nPJ (fa) for o<f(c) by adding E to fla) for fla) < c (a) d a in P subtracting \in from f(a) for 0 < f(a) of a in P. Repeat until no such Pexists in Df.

proof of End-Enlkerson: If D_f contains on s-...->t path P, then one can angment f by ∈, so v(f) is not maximized. If D_f has no s-...->t path P, then S:= {x∈V: x has a path s-...->x in D_f }

The rest follows 🖾

REMARKS

() Ford & Fulkerson gave this example of Drith c: A -> IRZO having one inational apacity (a) & Q leading to bad behavior in their algorithm; c: A→R₂₀ with $r := \sqrt{5'-1} \notin \mathbb{Q}$ (20 r² = 1-r) and MZ2.

One can reach a flow of after which repeatedly augmenting
P1, B, Pa, B, here
creates flows with values
$$1+2(rer^{2})$$

 $1+2(rer^{2}+r^{3}+r^{4})$
 $1+2(rer^{2}+r^{3}+r^{4}+r^{4}+r^{5}+r^{6})$
not leminoting, converging to $1+2(rer^{2}+r^{2}+r^{4}+...) = 3+2r$,
and there is a valid funcy with $v(f_{max}) = 2M+1$ (> 3+2r):
 $M=M$ of M=M
 f_{max} s is a valid funcy with $v(f_{max}) = 2M+1$ (> 3+2r):
 $M=M$ of M=M
 f_{max} s is a valid funcy with $v(f_{max}) = 2M+1$ (> 3+2r):
 $M=M$ of M=M
 f_{max} s is $N=M$ t
 $M=M$ of M=M
 f_{max} s is $N=M$ t
 $M=M$ of M=M
 f_{max} s is $N=M$ t
 $M=M$ of M=M
 f_{max} s is a valid funcy with $v(f_{max}) = 2M+1$ (> 3+2r):
 $M=M$ of M=M
 f_{max} s is $N=M$ t
 $M=M$ of M=M
 $M=M$ of M=M of M=M
 $M=M$ of M=M
 $M=M$ of M=M of M=M
 $M=M$ of M=M
 $M=M$ of M=M of M=M of M=M
 $M=M$ of M=M of M=M
 $M=M$ of M=M of M=M of M=M
 $M=M$ of M=M of M=M of M=M
 $M=M$ of M=M of M=M of M=M
 $M=$

•

3) Schrijver §4.6 describes a common generalization of Kuhn's maximum-weight bipartite matching algorithm and the Ford-Fulkerson angmenting flow algorithm, that finds a max flow with minimum cost given some cost function k: A -> R20, and where $cost(f) := \sum k(a) \cdot f(a)$ aeA

Convectify (thep.3) & Menger's Theorem's (§11.4)
Trying to answer the question of how many
vertices or edges must one vernove from
a convected graph G to disconnect it.
DEFINITION: For
$$k=0,1,2,...$$

a multi graph $G_{I}=(V,E)$ is k -edge convected if
 $|V| \ge 2$ and
one must remove at least k edges to disconnect G.
The edge-convectivity
 $k'(G):=max[k: G is k-edg-convected]$
 $= min \# of edges needed to remove to disconnect G.
EXAMPLES
 $k'(D-Q)=1=k'(cocco)=k'(Q)$
 p_n
 $trees T with NUE2$$

ACTIVE LEARNING: Let $\delta(G) := \min \left[d_G(x) : x \in V \right]$ = min vertex degree in G. (a) Prove $K'(G) \leq \delta(G)$ ¥ multigrephs $G^{-}(V_{\downarrow}E)$ with $|V| \geq 2$. (b) Prove $K(G) \leq \delta(G)$ ¥ simple grephs $G^{-}(V_{\downarrow}E)$ with $|V| \geq 2$.

We'll see later from Menger's Theorems how to compute K'(G), K(G) and also that K(G)=K'(G).

one defines the blocks $G_i^{=}(V_i, E_i)$ of G_i by removing each out vertex $x_1, x_{2,3}, ..., x_2$ and creating a new copy of x_i to go in each new component that removing it creates. One then records how the blocks G_i attached at the cut-vertices with the bipartite block-utvertex tree of G_i . EXAMPLES:

a block

G=

Ts not itself a block: G has Cut-reations X,X,X,X,5,Xy Creating G blocks G1,G2,G3,G4,G5, Z

block-ent-vertex bree:

ACTIVE LEARNING: Explain why the block-ont-vertex bipartile graph is always a tree.

Many graph algorithms as their

 first step use breader first search on Gr to find its connected components

within each connected component findits blocks
 and block-cut-vertex tree.

An algorithm of Hopcroft & Taijan (1973) does the latter quickly.

COROLLARY: For k=2, G=(V,E) is k-vertex-connected (k-edge-connected) \$\VIZ2 and between any siteV I k vertex-disjont paths s-st

In particular, K(G) ≤ K'(G), since vertex-disjoint paths are always edge-disjoint.

proof of Menger's Theorems: Digraph arc version: Given D = (V, A) and s, teV, assign capacities c(a)=1 VaEA and apply the Norflow: Mrn Cut Thm. to a max thow f with all $f(a) \in \mathbb{Z}$, & f(a) e { 0, 1}. A flow f obeying c with v(f)=k is the same as k are-disjont s-st paths An start (S,J) with c(S,J)=k is the same as a choice of k arcs whose removal destroys all s-st paths. Hence Max Flow = Min Cut is Nenger in this case.

It is still easy to see that onch a flow f with v(f) = kcorresponds to k are disjoint s at peths in D^{+} which corresponds to k vertex disjoint s at peths mD. One has to be a bit more corrected to check that on s-t and $A(S,\overline{S})$ in D^{+} with $c(S,\overline{S}) = k = v(f)$ can be altered to give one that only uses a_{x} arcs a_{x} in by pushing the other arcs forward or backward.

Then the s-turts A(S,S) using only ax arcs correspond to vertices whose removal destroys all s-st paths. EXAMPLE :

COROLLARY: For a multigraph
$$G=(V,E)$$
,
the vertex and edge connectivities
 $K(G)$, $K'(G)$
can be computed in polynomial time
as $K(G) = \min_{s,t\in V} \{\max_{i=1}^{nax} flow value v(f)\}$
 $in the digreph D to G, s, t \}$
 $K'(G) = \min_{s,t\in V} \{\max_{i=1}^{nax} flow value v(f)\}$
 $in the digreph D'to G, s, t \}$
(using $|V|^2$ instances of Ford-Fulkerson algorithm).