Vertex, edge wlorings and perfect graphs
(Bondy-Ninty Chop. 6) (Schrijver §7.4)
DEFINITION: Given G= (V,E) a (simple) graph,
an assignment f: V -> (1,2,-,k?)
is called a proper (vertex) k-coloring if

$$f(x) \neq f(y)$$
 & edges $e = \{x,y\} \in E$. $f(x) \neq f(y)$
 $X(G) := chrometic number of G$
 $:= min \{k: \exists a proper k-coloring if G$

One can get an easy upper band on X(G)
in terms of vertex degrees from the greedy coloring
algorithm: Order V = { x1, x2,, xn }
and then for i= 1,2,..., n assign vertex x; when

$$f(x_i) := \min\left(\{i,2,3,...\} > \{f(x_j): j \in \{i,2,..,i-j\} \ \{x_i,x_j\} \in E \} \right)$$

I.e., xi gets assigned the smallest available color
not used by any of its neighbors among {x1, x2, -, xi-1}

BRAMPLE

G:
$$1-4$$
 with V ordered 1,2,3,4,5
 $2-5$ gets greedy coloring
 $1-3/1$ gets $1-3/4$ $3/(G) \leq 3$.

$$\begin{aligned} & (G) \leq 1 + \max \left\{ \begin{array}{l} \deg_{G_{1}[\{x_{n}, x_{n}, \dots, y_{n-1}\}]} \\ \leq 1 + \bigwedge(G) \\ \end{array} \right\} \\ & \leq n + \bigwedge(G) \\ \end{array} \end{aligned}$$

We saw
$$X(K_n) = n = 1 + \Delta(K_n)$$

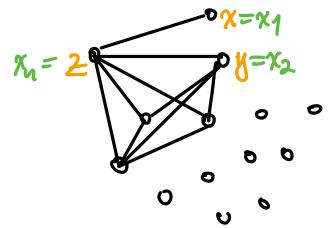
 $X(C_n) = 3 = 1 + \Delta(C_n)$
 $X(C_n) =$

Then G connected \Rightarrow G= $\longrightarrow = K_2 = X(G)=2$

CASE 2:
$$A(G) = 2$$
.
Then G connected \Rightarrow G is a path or (even) cycle
 $\chi(G) = 2 \checkmark$ $\chi(G) = 2 \checkmark$

(ASE 3: <u>\</u>(G)≥3.

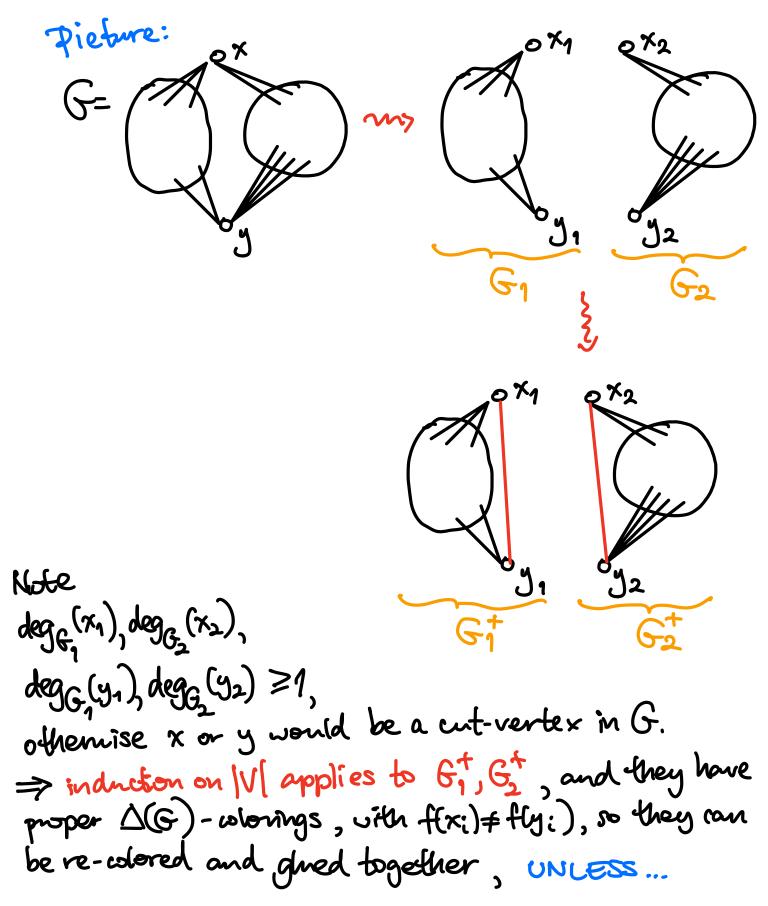
SUBCASE 3a: ¥non-edges (x,y) ∉E, the graph G-fx]-1y] is still connected. Pick zeV achieving deg₆(2) = △(G), and then find 2 neighbors x,y of z in G with Exyl ∉E (such x,y exist or else G=K_0(G)+1)



Color G via greedy wlong, using order like this: X1, X2, X3, X4, , ----, Mu-1, Xu y connected, by assumption connected of (pick a spanning tree Tim G[{x3, Xu,--, Xu}]] and pinek off leaves X3 + Xu Xy + Xu

Then
$$f(x)=1=f(y)$$
,
 $f(x_{i})\in \{1,2,...,\Sigma(G)\}$ for $j=3,4,...,3^{n-1}$
since deg $f\{x_{i},x_{2,...,},x_{j-1}\} \leq \Delta(G)-1$ because
 x_{j} has some neighbor among $f(x_{i}, x_{j+2},...,x_{n})$
and finally $f(z) \leq \Delta(G)$ since its neighbors
 x, y have $f(x)=1=f(y)$.
SUBCASE 3b: G has a cut vertex $x \in V$.
 $f(x)=1$ for $f(x)=1$ for $f(x)=1$
 $f(x)=1$ for $f(x)=1$ for $f(x)=1$ for $f(x)=1$
 $f(x)=1$ for $f(x)=1$ for $f(x)=1$ for $f(x)=1$
 $f(x)=1$ for $f(x)=1$ fo

SUBCASE 3c: G has no int-vertex, that is, it is 2-vertex-connected, but has a non-edge ix,y] & E with G-fxj-ly] disconnected.



one of G1, G2 is a complete KNG+1 $(conthere both G_1, G_2^+)$ being cycles, since $\Delta(G) \ge 3$. If $G_1^+ = K_{\Delta}(G) + 1$ then $\deg_{G_2}(x) = 1 = \deg_{G_2}(y)$ and one can form both of these: $\begin{array}{c} & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & &$ G2/ 1342 0 /[x2,y2] 0 0 properly $\Delta(Q)$. colorable, by induction

One can re-color and then give these proper A(G)-colorings of Gy and Gz/ixz, yzy to get a proper A(G)-coloring of Gy (with f(x)=f(y)) III

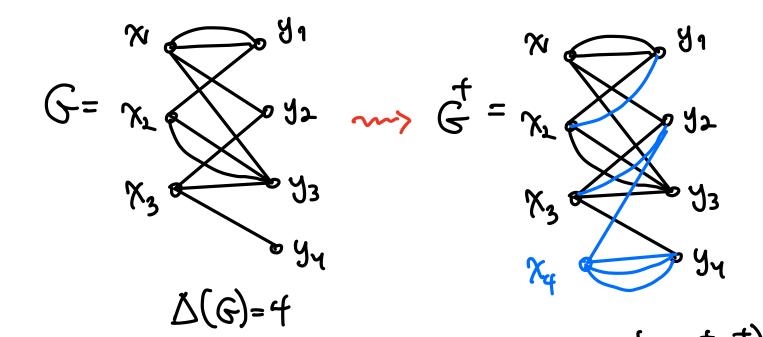
Edge-coloring (Bondy-Murty Chop.6)

DEFINITION: Given G=(V,E) a loopless mutigraph, an assignment f: E -> {1,2,3,...} is called a proper edge k-coloring if f(e) & f(e') Vedges e, e' incident at some vertex v. $\chi'(G) := edge chromatic number of G$ = min { k: I a proper edge k-coloning of G

EXAMPLES : (1) $\chi^{1}\left(2^{\frac{1}{3}},\frac{1}{3},\frac{1}{3}\right) = 5$ (2) $\chi^{1}(C_{n}) = \begin{cases} 2 & \text{if } n \text{ is oven} \\ 3 & \text{if } n \text{ is odd} \end{cases}$ (3) One can see that $\chi'(\Delta) \ge \Delta(G)$ mar vertex degree ACTIVE LEARNING Compute $\chi'(\Lambda)$, $\chi'(\Lambda$ hy copies

It is again NP-complete to compute X'(G) in general, but even more fonstrating due to ... THEOREM (Vizing 1264) (Bondy-Munts) For any simple graph G, Thim 62) $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$ and more generally, for any multigraph G $\Delta(G) \leq \chi'(G) \leq \Delta(G) + \mu(G)$ max edge multiplicity C.g. $\chi'\left(\begin{array}{c}\mu \text{ copies}\\ \mu \text{ copies}\end{array}\right) = 3\mu = 2\mu + \mu$ $\mu \text{ copies}$ = $\Delta(G) + \mu(G)$ Vizing's Theorem is not so hand to prove, but we'll skip it - see Bondy & Murty for the proof. However, let's show that bipartite graphs have more predictable X(Q)... THEOREM (Königs "Line-coloning Theorem" 1937) For a bipartite multigraph G= (XWY, E), $\chi'(G) = \Delta(G).$

proof: Given a bipartite multigraph G, one can add vertices and edges until it is (biportite and) $\Delta(G)$ -regular.



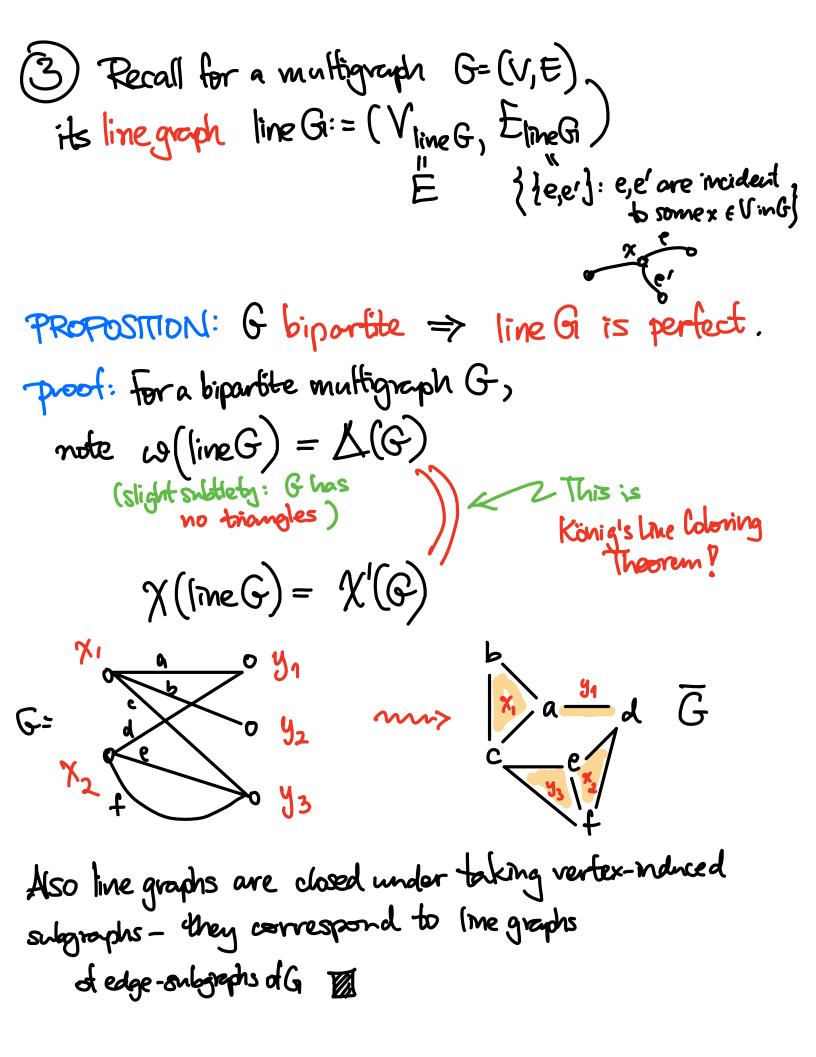
In this new bipartite $\Delta(G)$ regular graph $G^{\ddagger} = (V, E^{\ddagger})$, we've seen one can decompose its edge set

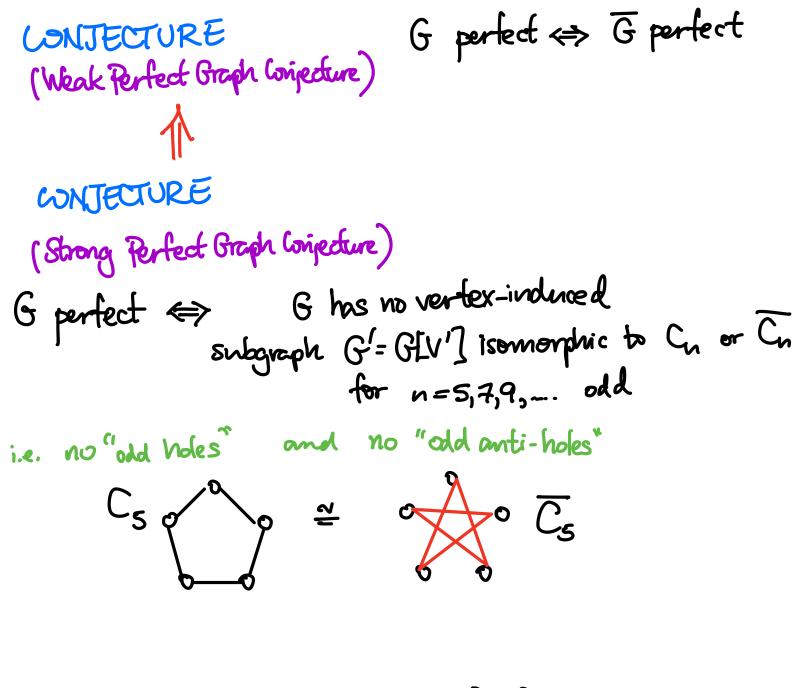
E^t= M, H M₂ H ... H M_A(Q) into Δ(G) perfect matchings, which gives a proper edge Δ(G)-coloring of G^t, and restricts to such a Δ(G) coloring for G.

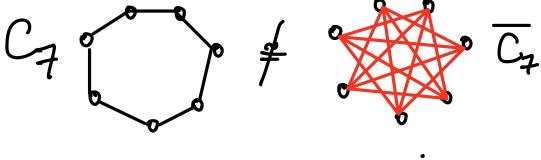
EXAMPLES:

() Bipartite graphs G are perfect, sure either • $\chi(G) = 1 = \omega(G)$ if G has no edges •••• or • X(G)=2= 69(G) and all of their vertex-induced subgraphs G[V'] are also bipartite. 2 PROPOSITION: Complements Gi of biportite graphs G are perfect. proof: Without loss of generality, can assume G has no isolated vertices, since such a vertex x in G leads to a vertex x, in G connected to all of V-1x, so that $\chi(\overline{G}) = 1 + \chi(\overline{G} - 1x_3)$ is G $w(\overline{G}) = 1 + w(\overline{G} - 1 \times 1) \times \mathcal{G} \overline{G}$ which for all $\overline{G}(\sqrt{1})$ and smillarly for all G[v].

But then one can note that $\omega(\overline{G}) = \alpha(G) = \max \text{ size of on independent.}$ Stable set of vertices $V' \subseteq V$ in \overline{G} G G G G dique any stable, k. $\chi(\overline{G}) = \min\{k: \overline{G} \text{ has a proper vertex } k-coloring}\}$ while $\frac{1}{2} \frac{1}{2} \frac{1}$ = min $\{k: V = V_1 \cup V_2 \cup \dots \cup V_k \text{ with } V_i \text{ cliques in } G\}$ i.e. either V:= {x} or V:: {x,y} an elged since Gisbiperfile = min{k: V=V, UV2U...Uk with V;=[x,y]edges MG] (since G has no isolated vertices) = min size of an edge cover FSE in G $=: \rho(G) = \alpha(G)$ by König-Egenvary + Gallai Thurs







Lorasz proved the Weak Perfect Graph conjecture, by proving the following stronger statement. THEOREM: Gasimple graph is perfect (Lovasz 1972) (Severy vertex-induced) subgraph G'= G[V'] has $\mathcal{O}(G') \cdot \alpha(G') \geq |V'|$ max size mox size (*) clique moep set (*) pool: (=) For any graph G, one has $\chi(G) \propto (G) \geq |V|$ because a proper X(G)-coloring decomposes $V = V_1 \sqcup V_2 \sqcup \ldots \sqcup V_{\chi(G)}$ with $V_1 \subseteq V$ indep. sets $\mathfrak{s}_{\mathsf{V}} |\mathsf{V}| = \sum_{i=1}^{\mathsf{X}(G)} |\mathsf{V}_{i}| \leq \mathsf{X}(G) \cdot \mathsf{x}(G).$ Hence for perfect G, one has $co(G) \cdot \alpha(G) \ge |V|$, = $\chi(G)$ and the same inequality is inherited by all of its vertex-induced subgraphs G, since they are also perfect.

$$(\Leftarrow) (\text{different probley Gospanian 1996})$$

Suppose G is not perfect but satisfies (*),
and has n:=|V| smallest among all such examples.
We'll reach a contradiction.
We know X(G) > wo(G), but G' is perfect $\forall G' \in G[V'] \not\subseteq G$.
Letting $\forall := \alpha(G)$, we'll use incarabebra to
produce the contradiction as follows.
We'll construct indep sets $S_0, S_{1,-}, S_{010}$ in G
and cliques Ko, K1,..., Kais in G
with $|K_i \cap S_j| = \int_{1}^{0} if i \not\in j$
This would imply that clear
 $(o, 1)$ -incidence matrices
 $K_0 \begin{pmatrix} x_1, x_2, \dots, x_n \\ y_i \notin i & x_i \notin k \\ \vdots \\ K_{010} \end{pmatrix}$ and $B = \begin{cases} S_0 \\ S_{010} \end{pmatrix} \begin{pmatrix} x_1, x_2, \dots, x_n \\ y_i & y_i \notin k \\ \vdots \\ S_{010} \end{pmatrix}$
where $V = \frac{1}{2}x_1, x_2, \dots, x_n$
Sotisfy $(A \cdot B^T)_j = |K_i \cap S_j| = \begin{cases} 0 & i \neq i \neq j \\ 1 & i \notin i \neq j \end{cases}$

That is,
$$A B^{T} = \begin{bmatrix} 0, 0, 1, \dots, 1\\ 1, \dots, 1 0 \end{bmatrix} = J_{0(3+1)} - J_{0(3+1)}$$

has eigenvalues
 $(\alpha(3+1, 0, 0, \dots, 0)$
 $\Rightarrow AB^{T}$ is nonstrugubar (no zero ergenvalues)
 \Rightarrow rank $(AB^{T}) = \alpha(3+1)$
 \Rightarrow n $\geq \alpha$

Next we claim that for each S; one has
$$\omega(G - S_i) = \omega = \omega(G)$$
,
 $1 = 0, 1_{J-J-J} = \omega(G - S_i) = \omega(G) - 1$
and then $\chi(G) \leq \omega(G)$ by aboving S; its own ador;
antrodiction to $\chi(G) < \omega(G)$.
Thus $\exists a clique K_i$ of size ω in $G \cdot S_i$,
i.e. $K_i \cap S_i = \emptyset$ for each $i = 0, 1, ..., \alpha \omega$.
Lostly, we daim the inequality $|K_i \cap S_j| \leq 1$
is actually an equality $|K_i \cap S_j| = 1$ because of CLAM(m):
if $K_i = \{y_1, y_{2, j-1}, y_{2, 0}\}$, then the α different sets S_j
containing y_1 must be chosen among $\{S_0, S_1, ..., S_{d, 0}\} - \{S_i\}$
and they must all be different from those containing
 $\{y_{2, i}, y_{2, -1}, y_{2, 0}\}$. This forces $[K_i \cap S_i] = \{0, 1, ...,$

REMARKS:

(1) Berge's Strong Perfect Braph Conjecture was later proven by Chudnovsky, Robertson, Seymour & Thomas (2002) in a paper of alasent 150 pages (?) ③ Grötschel, Levasz and Schnijzer (1981) showed that for perfect graphs Gi there is a polynomial-time algorithm to compute w(G) = X(G) and find a proper X(G)-coloring, using the ellipsoid method in mean programming. However, it is not really a combinatorial algorithm.