Planar graphs (Bondo-Munty Chap. 9)

DEFINITION: A multigraph G=(V,E) is planar if it can be drown in \mathbb{R}^2 with

• each edge e= {x,y} a simple Jordan eurve no sett-intersections

x of Good

• two edges never cross or intersect at all except possibly at a common end-vertex: 2000 x'

REMARK: There are some topological technicalities about the combinions embeddings G > IR2 that one can be more careful about, e.g. by insisting on the edges being embedded smoothly or piecewise-linearly

EXAMPLES:

e.g. G= is planar

2 We saw Kn is planar for us4

0 0-0 K1 K2

K₃

but we suspect it is non-planar for n>5:

but we suspect it is non-planar for m, n z 3:

NOTE: Showing K5 and K3,3 are non-planar would suffice, since if G = (V, E) has an edge-subgraph G' = (V', E') which is non-planar, then so is G.

(4) Planar maps M=M(G)

:= a plane embedded graph G1, together with the faces/regions/countries into which it divides the plane IR2, including one unbounded region

e.g.

G=

Find F3

Fi

QUESTION: (Guthrie's "4-wolor problem")
1852

In a planar map M = M(G), can one always color the regions with only 4 colors 50 that those sharing a boundary get different colors?

3 dual reformulation

Consider the dual planar graph

Engions

Fi, Fi, ...

for M(G)

2 pairs (Fi, Fig of regions shoring ? aboundary)

EQUIVALENT OUTSTION (to 4-Color Problem):

Does every planar graph G*
have X(G*) ≤ 4?

THEOREM: "H-Color Theorem" (Appel & Haken) Yes, G planar => X(G) < 4.

However, the only currently known proofs are computer-assisted and involve ase-by-case checking of related objects.

We will at least see how to prove

the 6-Color Theorem, and then the 5-Color Theorem

pretty easily, once we have learned Euler's Formula.

Euler's Formula

THEOREM For any wonnected planar graph (Enter 1752) G=(V,E) embedded in \mathbb{R}^2 with f faces/regions (including Funbanded), one has n-m+f=2 :=|V|:=|E|

proof: Induct on the number f of regions.

BASE CASE: f=1Then G has no cycles (else it would enclose a bounded region F, so $f \ge 2$), so G is a tree.

But then |E|=|V|-1, m = n-1so n = m+f

$$so n - m + f$$

= $n - (m_1) + 1 = 2$

INDUCTIVE STEP: If f22, then G contains a cycle, and hence I some edge e on this cycle, whose removal does not disconnect G, but instead merges two faces

Then by induction,

$$n(G \setminus e) - m(G \setminus e) + f(G \setminus e) = 2$$

= $n(G) = m(G) - 1 = f(G) - 1$

$$\Rightarrow$$
 $n(G) - m(G) + f(G) = 2$

COROLLARIES to Euler's formula

DEFINITION: The girth of a multigraph G= (V, F) is the number of edges in its shortest cycle. If G has no cycles then $greth(G) := \infty$.

EXAMPLES

girth(G)=1 \Leftrightarrow G has a loop

[]

ed e somewhere

• girth(G) ⇐⇒ Gissimple and F13,45_3 has at least one cycle e.g. girth ()-4

 G bipartite ⇒ graph(G) even (or ∞) (why no backward implication \Leftarrow ?

A planar connected graph G=(V,E) with girch(G) ≥ 9 and at least one ycle (not a tree)

has
$$\frac{m}{|E|} \leq \frac{9}{9-2} (n-2)$$
.

In particular,

- simple planar connected graphs which are not bees have $m \le \frac{3}{1}(n-2) = 3n-6$
- · simple planar connected bipartite graphs which are not trees have $m \le \frac{4}{2}(n-2) = 2n-4$

EXAMPLES:

K5 is not planar because and $m \neq 3n-6$ 10 3.5-6=9

$$m \neq 3n - 6$$
 $3.5 - 6 = 9$

M=5

m=(5)=10

is not planar because m=9and $m \neq 2n-4$ 9 2-6-4=8

proof of COR 1: We claim that 2m 2 gt

follows by counting in 2 ways the doubled red edges in the picture here,

$$|\{(e,F): e\in E, \}|$$

Faforce,
Faforce,
 $|\{e,F\}: e\in E, \}|$

Fatorce,
 $|\{e,F\}: e\in E, \}|$

Formding $|\{e,F\}| \ge fg$
 $|\{e,F\}: e\in E, \}|$

Fatorce,
 $|\{e,F\}: e\in E, \}|$

Therefore $f \leq \frac{2m}{g}$, so then Enter's formula gives $n-m+\frac{2m}{9}\geq 2$ $n-2 \geq m\left(1-\frac{2}{9}\right) = m \cdot \frac{9-2}{9}$ $\frac{g}{g-2}(n-2) \geq m$.

"6-wor Theorem"
COROLLARY 2: Simple planar graphs G
always have a vertex of degree ≤ 5, and
hence all (loopless) planar graphs can be
properly vertex-6-colored, via a greedy
algorithm.

proof: WLOGI our simple planar graph Gr is wonnected, and has a cycle (else it's a tree, so it has a vertex of degree 1).

So it has m = 3n-6

 $2m \leq 6n-12$, and

average degree $\frac{1}{n} \cdot \sum_{x \in Y} d_{b}(x) = \frac{2m}{n} \leq \frac{6n-12}{n} = 6 - \frac{12}{n} < 6$.

Hence G has some $x \in V$ with $d_G(x) \leq 5$. If one arranges this vertex x to come last in a greedy 5-coloring of G-1x, which exists by induction on v = |V|, it won't need more than 5 colors for x.

For a loopless planar graph, one can consider its underlying simple graph.

loopless planar graphs can be "5-color Theorem properly vertex-5-colored. (Kempe 1879) proof: Induct on n= [V]. BASE CASE: N < 5. No problem! INDUCTIVE STEP: M26. CASE1: Bavertex xeV with degs(xo) < 4. Then properly 5-color G-ixoly by induction, and one has enough whom for xo. CASE2: Favertex xeV with degg(xo)=5.

Then some pair ixi,x; if of its neighbors ixi,...,x5 do not form an edge in G, else they would form a K5 in G, making G non-planar.

Perform this two-step construction

$$G \longrightarrow G-(x_0) \longrightarrow G:=(G-(x_0))/x_{i}=x_{j}$$

and we claim that \hat{G} is still planar:

By induction, & has a paper 5-coloring, which gives a proper 5-coloring of G-1xof having some color on Xi, Xj, which then extends to a 5-coloring of G on Xo

It was a major achievement when Appel & Haken 1976 were able to use enough theory (some of it called discharging) to reduce the proof to a check of finitely many reducible configurations, and then check them via computer, proving...

THEOREM: Loopless planargraphs Gran be "4 wortheorem"

property vertex-4-colored, i.e. $\chi(G) \leq 4$.

See the Wikipedia page on 4-color theorem for a lot of history and discussion.

ACTIVE EPISTEMOLOGY In which of these scenarios would you say you know a theorem is time?

- You proved it, via induction.
 You proved it, avoiding induction.
- · You read a proof once, but have forgotten it.
- There is a published poof of 10 pages
- There is a published poof needing a computer to check cases.

 There is a published poof checked via lean or Roca

Kuratowski's Theorem & graph minors (§9.4, 9.5, 8.3)

DEFINITION: Given a multigraph of, say G' is a subdivision of Gi if it is obtained by iterating

PROPOSITION: When G'is a subdivision of G, then
G is planar \iff G' is planar

Hence planar graphs cannot contain edge-subgraphs isomorphic to subdivisions of K5 or K3,3.

EXAMPLE Peterson graph is not planar, because it has such an edge-subgraph subdividing K3,3.

THEOREM (Kunatowski 1930)

The proof is not so hard, but takes worksee Bondy & Murty § 9.4, 9.5

An interesting variant uses this notion.

DEFINITION: Say G' is a minor of G if it can be obtained by a sequence of deletions and contradions of edges of G and deletions of vertices.

Note deleting edges, vertices and contracting edges all preserve planarity:

THEOREM (Wagner 1937)

G is planar \iff G has no minor $G'\cong K_5$ or $K_3,3$ (\implies) is again easy, (\iff) is easy if one assumes Kuratowski's Theorem since any edge subdivision of G' can be contracted to G'.

EXAMPLE Pelersen graph is not planar also because it has a minor $G' \stackrel{\sim}{=} K_5$:

REMARK: Hadwiger (1943) posed the following:

CONJECTURE:

 $\chi(G) \ge k \iff G \text{ has a minor } G' \cong K_k$

(since planar graphs cannot have)

K5, K6,... as miners

4-COLOR THEOREM

Hadwiger's Conjecture is considered extremely hard.

Hadwiger also formulated/conjectured the following:

GRAPH MINORS THEOREM: Every graph property closed (Robertson-Soymour 1983-2004) under taking minors is 500 page proof?

characterized by a finite list of excluded miners {G1,G2,...,Gr 4

EXAMPLES:

- 1) G is planar \iff G excludes minors { K₅, K_{3,3}}
- 2) ACTIVE LEARNING: Prove the following: G is a forest \Leftrightarrow G excludes minor { C₁ } (acyclic)
- 3 DEFINITION: A multigraph G=(V,E) is called orderplanar if it has a plane embedding with every vertex xeV incident to the unbounded face.

EXAMPLES:

Kin and K2,2 are onterplanar, but K2,3 is not

Z = \$\frac{1}{2}

K1, K2, K3 are enterplanar, but K4 is not

Outenplanarity is closed under taking minors

THEOREM: (Chartrand & Harany 1967)

G is outerplanar

⇒ G excludes minors [K23, K4]

Consistent with Hadwiger's Conjecture, one has...

PROPOSITION: Gouterplanar => X(G)=3.

proof: WLOG G is simple and outerplanar.

$$G =$$

Subdivide its longer cycles into triangular cycles, introducing no new vertices.

Then inside each 2-connected component, a proper 3-coloning is now unique, once you've 3-colored one of its triangles:

This restricts to a proper 3-coloring for the original graph G.