







































































































Planar graphs BondyMurtyChap 9

DEFINITION A multigraph G
V E isplanar

if it can be drawn in 1R with

each edge e x y asimple Jordan curve

no self intersections

onry
GOOD AD

two edges never cross or intersect at all except

possiblyat a common end vertex
go

x

REMARK There are some topological technicalities

about the continuous embeddings G as 1R

that one can be more carefulabout e g by
insisting on theedgesbeingembedded

smoothly or piecewise linearly

Oxy 9



EXAMPLES

Addingloops orparalleledges
has no effect

on planarity
e g G is planar

0 0

is planar

no
0

We saw kn is planar for n 4

It It
Ky

but we suspect it is non planar for n s

30

Ks



Similarly we saw km n isplanar
if me 2 or n 2

01
67

0 0

n

Knin

K2 n

but we suspect it is non planarfor m n 3

093

NOTE Showing Ks and 13,3 are

non planar wouldsuffice since if

G V E has an edge subgraph G V E

which is non planar then so is G



Planarmaps M M G

a planeembeddedgraph G togetherwith

the faces regions countries

intowhich itdivides the plane IR

including one unboundedregion

e g

5

EE.EEEiET veti
Funbounded

QUESTION Guthriggs24
colorproblem

In a planarmap M M G can onealways

color the regions withonly 4 colors
so

that those sharing a boundaryget
different colors



dual reformulation

Consider the dual planargraph

G V EY
regions pail nothing

EEG aboundary

ME.FI IiIIIi
Funbounded

EEE.FI IIIDEE ID
EQUIVALENT QUESTION to 4 ColorProblem

Does every planargraph G
have X G 4



THEOREM 4 ColorTheorem

Appel Haken Yes G planar G 4
1976

However the only currently known proofs

are computer assisted and involve

case by case checking of related
objects

We will at least see how to prove

the 6 ColorTheorem and then

the 5 ColorTheorem

pretty easily once we have learned

Euler's Formula



Euler's Formula

THEOREM For any
connected planargraph

Euler1752 G V E embedded in 1R with

f facesregions including
Funbounded one has

n m f 2

IN EEI

EXAMPLE

18 4 16

fit.fi
IiIiIiwG

of 569 to

19 572

prof Induct on thenumber f of regions
BASE CASE f 1
Then G has no cycles

else itwouldenclose

a boundedregion F so f 22 so G is a tree

But then I 11
so n m f

n a 1 1 2



INDUCTIVE STEP If f 22 then G contains

a cycle and hence some edge e on this

cycle whose removal does
not disconnect G

but insteadmerges two
faces

G on
WIFI

delete e

one

0.1yd

t.LA
Then byinductions

n Gre m Ge f G e 2

Tea Tea Fear
n G m G f G 2 Me



COROLLARIES to Euler's formula

DEFINITION The girthof amultigraph
G V E

is the number of edges in its
shortestcycle

If G has no cycles thengirth
G 0

EXAMPLES

girth01 1 G has a loop EP

girth G
2 Gis loopless

buthas aparallel FI
ed esomewhere

girth G Gis simpleand
hasat least one cycle434,5

eg girth 81 8 4

G bipartite girthG even or n

whynobackward

implication P



COROLLARY 1 to Euler'sformula

A planarconnectedgraphG V E with

girth G g and at least one cycle not atree

has It Facet
Inparticular
simpleplanar connectedgraphs

which are nottrees

have m n 2 3h 6

simple planarconnectedbipartitegraphs
which

are nottreeshave m n 2 2n 4

EXAMPLES K is notplanar because my
gand

1
3h 6

1 1 15 6 9

K3,3 is not planar because in
and m 2n 4

81 9 2 6 4 8



proof of COR 1 We claim that 2m gf
followsbycounting in 2 ways the doubled
red edges in the picture here

11 4 040
EFFIE.EET19ce.F

EEare

Ff1gge f92mF

boundst

Therefore f
2

so then Euler'sformulagives
n m f 2

n m 2g 22
n 2 m 1 8 m 92

2
n 2 m If



coRÉÉnkÉi in simpleplanargraphs G

always have a vertex ofdegree 5 and

henie all loopless planargraphs can be

properlyvertex 6 colored via a greedy

algorithm

proof WLOG our simpleplanargraph G

is connected and has a cycle else it's
a

tree so it has a vertex ofdegree 7

So it has m 3n 6

2m Gu 12 and

averagedegree dax 21
6 1 6 26

Hence G has some xeV with dg
x 5

If one arranges this vertex x to
come last in

a greedy 5 coloringof G
whichexistsbyinduction

on n V1 it won't need more than
5 colors for x

For a looplessplanargraph one can

consider its underlyingsimplegraph ix



COROLLARY 3 toplessplanargraphs canbe
5 colorTheorem

properlyvertex 5 colored
Kempe1879

Prof Induct on n V1

BASECASE n 5 No problem

INEVIE
STEP MIG

CASEY a vertexyeVwith degg x 4

Thenproperly 5 color G 404by
induction

and one hasenoughcolorsfor Xo

CASE Favertex xpV
withdegg x 5

Then some pair xi of its neighbors x xs

do not form an edge in G elsetheywould form

a kg in G making G
non planar

Perform this two stepconstruction

G ms G 1 03 ms G G 4 0 x x



and we claim that G is still planar

FYI

G 4 0G

ca ask.es

By induction G has a proper
5 coloring whichgives

a proper 5 coloring
of G 5 0 havingsame color on Xi xj

which then extends to a 5 coloring of G on to 1



It was a major achievementwhen Appel Haken1976

wereableto use enoughtheory some of it called

discharging to reducetheproof to acheck
of

finitelymany reducible
configurations and then

check them via computer proving

ItEEEham toplessplanargraphs G can be

properly vertex
4 colored i e X G 4

See the Wikipediapage on
4 color theorem for

a lot of history and discussion

ACTIVE EPISTEMOLOGY In whichofthese scenarios
wouldyousay youknow

a theorem is true

You proved it via induction

You proved it avoiding
induction

You read a proof once but haveforgotten it

There is a publishedproof of 10 pages
700
1000

There is a publishedproof needing a computer
to

check cases

There is a publishedproofchecked viaLean orRocq



Kuratowski'sTheorem graph minors
59.4 9.5 8.3

DEFINITION Given amultigraph G say G
is

a subdivisionof G if it is obtained byiterating

this operation
Coe Coe E 0 00

LY LY
PROFESSION When G'is asubdivisionofG then

Gisplanar G isplanar

Henceplanargraphs cannot contain edge subgraphs

isomorphicto subdivisions
of Ks or 13,3

EXAMPLE Petersengraph is notplanar because it
has such an edge subgraphsubdividing 13,3

memorse
093 good c

the 092
rededges 9 9

0 3



THEOREM Kuratowski 930

Gisplanar it contains no edge subgraph

E isomorphic to a subdivision

of Ks or 1 3,3

Theproof is not so hard but takes work
see Bondy Murty59 Y 9.5

An interestingvariant uses this notion

DEFINITION Say G is a minor of G if it can

beobtainedby a sequenceof deletions and
contraction

of edgesof G anddeletionsofvertices

Note deletingedgesvertices and contractingedges

all preserve planarity

G
ms are

fed
6 0 0

THEOREM Wagner1937
G isplanar Ghas no minor G Ks or k3,3

isagain easy F is easy if one assumesKuratowski'sTheorem
since anyedgesubdivision ofG can becontracted to G



EXAMPLE Petersengraph is notplanaralsobecause it
has a minor G Kg

0 mins p 61 15contract

Of the5rededges

REMARK Hadwiger 1943 posed the following

CONJECTURE

G 2k G has a minor G K

sinceplanargraphscannothave

Ks Ko as minors

4 COLORTHEOREM

Hadwiger'sconjecture is
consideredextremelyhard

Hadwigeralsoformulated conjecturedthefollowing

GRAPHMINORSTHEOREM Everygraphpropertyclosed
RobertsonSeymour19832004 under taking minors is500pageproof

characterizedby a finite listofexcluded minors
GrGa Gr



EXAMPLES

G is planar G excludes minors Ks 13,3
Wagtorem

ACTIVE LEARNING Prove the following

Gis a forest Gexcludes minor C

acyclic D

DEFINITION A multigraph G V E is

called outerplanar if it has a planeembedding

witheveryvertex xeV incident to the unboundedface

EXAMPLES

1
0

0 915 71 is outerplanar

K n andK22 areonterplanar
but 12,3 is not

7
Kn K2 K areouterplanar but Ku

isnot

000 It



Outerplanarity is closedundertakingminors

E rite ij.fi itI

THEOREM
Chartrand Harary1967

G is outerplanar

G excludesminors K23 Ky

Consistent with Hadwiger's conjecture one has

PROPOSITION G outerplanar G 3

Beth WLOG G is simpleandouterplanar

a

by
to
pyrenot had



Subdivide its longercycles into triangularcycles

introducing no new vertices

toerag
aol.lk

Then inside each 2 connected component
a proper 3 coloring

is now unique once you've
3 colored one of its triangles

2

Epj Ion k.rs
This restricts to a proper 3 coloring for the

original graph G Me


