## Math 5707 Graph theory <br> Spring 2013, Vic Reiner

## Midterm exam 1- Due Wednesday Feb. 27, in class

Instructions: This is an open book, open library, open notes, open web, take-home exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (15 points total) Define a directed graph $G(k, n)=(V, A)$ whose vertex set $V$ consists of all words $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of length $n$ from an alphabet of $k$ letters in which $a_{i} \neq a_{i+1}$ for $i=1,2, \ldots, n-1$, and the arc set $A$ has all arcs of this form:

$$
\begin{gathered}
\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \\
\downarrow^{\left(a_{0}, a_{1}, \ldots, a_{n-1}, a_{n}\right)} \\
\left(a_{1}, \ldots, a_{n-1}, a_{n}\right)
\end{gathered}
$$

For example,

(a) (5 points) Show that $|V|=k(k-1)^{n-1}$ and $|A|=k(k-1)^{n}$.
(b) (10 points) Prove for all $k, n$ that $G(k, n)$ has a directed Euler tour.
2.(15 points total) Let $T$ be a minimum cost spanning tree in a graph $G=(V, E)$ with respect to some edge-cost function $c: E \rightarrow \mathbb{R}$.

Prove or disprove: For every pair of vertices $x, y$ in $V$, the unique path from $x$ to $y$ within $T$ will achieve the minimum cost among all paths from $x$ to $y$ within $G$.
3. (20 points total) Recall that for a simple graph $G=(V, E)$, its complement graph $\bar{G}$ is the simple graph on the same vertex set $V$, but with the complementary set of edges. That is, $\{x, y\}$ is an edge of $\bar{G}$ if and only if $\{x, y\} \notin E$.

Say $G$ is self-complementary if $\bar{G}$ is isomorphic to $G$. For example, the path $P_{3}$ with 3 edges is self-complementary, as is the 5 -cycle $C_{5}$ (edges of $\bar{G}$ are shown dashed):

(a) (10 points) Prove that a self-complementary graph must have $n=|V|$ either congruent to 0 or 1 modulo 4 , that is, either $n$ is divisible by 4 or $n$ has remainder 1 on division by 4 .
(b) (5 points) Prove that for any $n$ divisible by 4 there exists a self-complementary graph having $n$ vertices.
(Hint: break the vertex set into 4 equal size groups and then use $P_{3}$ as a guideline for how to connect between groups).
(c) (5 points) Prove that for any $n$ having remainder 1 on division by 4 there exists a selfcomplementary graph having $n$ vertices.
(Hint: Figure out how to add one more vertex to your construction from part (b).)
4. (15 points total) Show that a tree that has no vertices of degree two will have more leaf vertices (that is, degree one vertices) than non-leaf vertices, and in fact, at least two more leaves than non-leaves.
5. (15 points) Chapter I, Exercise 80 from Bollobás: Show that every connected (simple, undirected) graph $G=(V, E)$ with $m=|E|$ even has an orientation of its edges making a digraph $D=(V, A)$ in which every vertex has even outdegree.
6. (20 points total) Let $G=(X \sqcup Y, E)$ be a bipartite graph for which there exist positive integers $d_{X}, d_{Y}$ such that every $x$ in $X$ has the same degree $d_{G}(x)=d_{X}$ and every $y$ in $Y$ has the same degree $d_{G}(y)=d_{Y}$.
(a) (10 points) Prove that $d_{X} / d_{Y}=|Y| /|X|$.
(b) (10 points) Prove that if $d_{X} \geq d_{Y}$ then there exists a matching $M \subseteq E$ that matches every $x$ in $X$.

