Math 8201 Graduate abstract algebra- Fall 2010, Vic Reiner Midterm exam 1- Due Friday October 15, in class

Instructions: This is an open book, open library, open notes, takehome exam, but you are not to collaborate. The instructor is the only human source you are allowed to consult. Each of the 6 problems is worth approximately the same number of points.

1. Let H, K be subgroups of a group G.
(a) Show that the following conditions are equivalent:
(i) $H K$ is a subgroup of G.
(ii) $K H$ is a subgroup of G.
(iii) $H K=\langle H, K\rangle$, the subgroup of G generated by $H \cup K$.
(iv) $H K=K H$.
(b) Suppose that H_{1}, H_{2} are both normal subgroups of G, and that $\operatorname{gcd}\left(\left|H_{1}\right|,\left|H_{2}\right|\right)=1$. Show that $h_{1} h_{2}=h_{2} h_{1}$ for all $h_{1} \in H_{1}$ and $h_{2} \in H_{2}$.
2. Prove or disprove the existence of the following group isomorphisms:
(i) $S_{4} \cong D_{24}$
(ii) $D_{12} \cong \mathbb{Z} / 2 \mathbb{Z} \times D_{6}$
(iii) $D_{16} \cong \mathbb{Z} / 2 \mathbb{Z} \times D_{8}$
3. (a) Let G be a group, and $H \leq G$ a subgroup with finite index $n=[G: H]$. Show that H contains a subgroup N with $N \triangleleft G$ and index $[G: N]$ dividing n !.
(Hint: let G act on G / H by left-translation, that is, $g \cdot a H:=g a H$)
(b) Given two subgroups H_{1}, H_{2} of G, both of finite index in G, show that $H_{1} \cap H_{2}$ is also of finite index in G.
4. Let P be a group of order p^{n} for a prime number p and $n \geq 2$. Show that for any element x in P, the map $\operatorname{ad}_{x}: P \rightarrow P$ defined by $\operatorname{ad}_{x}(y)=x y x^{-1} y^{-1}$ has the following property: $\operatorname{ad}_{x}^{n-1}(y)=e$ for every y in P.

Here ad x_{x}^{n-1} means the composition of the map ad_{x} repeatedly $n-1$ times, so for example, $\operatorname{ad}_{x}^{2}(y)=\operatorname{ad}_{x}\left(\operatorname{ad}_{x}(y)\right)$.
5. Let p be the smallest prime number dividing the order $|G|$ of a finite group G, and let $H \triangleleft G$ with $|H|=p$. Show that $H \leq Z(G)$, the center of G.
(Hint: Let G act on H via conjugation, that is, $g \cdot h:=g h g^{-1}$. Note also that every g in G fixes the identity element e in H under this action.)
6. Consider the integers $\mathbb{Z} / n \mathbb{Z}$ modulo n as a ring with usual \times and + operations, and make the Cartesian product $\mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{t} \mathbb{Z}$ into a ring with componentwise \times and + operations.
(a) For $n:=n_{1} \cdots n_{t}$, show that the map

$$
\begin{aligned}
f: \mathbb{Z} / n \mathbb{Z} & \longrightarrow \mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{t} \mathbb{Z} \\
\bar{r} & \longmapsto(\bar{r}, \ldots, \bar{r})
\end{aligned}
$$

is both well-defined, and a ring homomorphism, that is, $f(a b)=f(a) f(b)$ and $f(a+b)=f(a)+f(b)$ for all a, b in $\mathbb{Z} / n \mathbb{Z}$. Here \bar{r} on the left means " $r \bmod n$ ", but in the $i^{\text {th }}$ component on the right it means " $r \bmod n_{i}$ ".
(b) Show that if, in addition, if one has $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for $i \neq j$ then the above map f is injective, and hence bijective (so a ring isomorphism).
(c) Use this to show that if n has prime factorization $n=p_{1}^{e_{1}} \cdots p_{t}^{e_{t}}$ with p_{i} primes and $e_{i} \geq 1$, then the Euler phi function defined by

$$
\varphi(n):=\left|(\mathbb{Z} / n \mathbb{Z})^{\times}\right|
$$

has the formula

$$
\varphi(n)=\varphi\left(p_{1}^{e_{1}}\right) \cdots \varphi\left(p_{t}^{e_{t}}\right)=\left(p_{1}^{e_{1}}-p_{1}^{e_{1}-1}\right) \cdots\left(p_{t}^{e_{t}}-p_{t}^{e_{t}-1}\right)
$$

(d) Recall that Fermat's Little Theorem says any integer x satisfies $x^{p} \equiv x \bmod p$ when p is prime. Prove the following generalization: If n is squarefree in the sense that $n=p_{1} \cdots p_{t}$ for distinct primes p_{i}, then every integer x satisfies $x^{\varphi(n)+1} \equiv x \bmod n$.
(e) Show that the result in part (d) is false whenever n is not squarefree, that is, for each nonsquarefree n, show how to exhibit some integer x for which $x^{\varphi(n)+1} \not \equiv x \bmod n$.

