Math 8201 Graduate abstract algebra- Fall 2010, Vic Reiner Midterm exam 2- Due Friday November 19, in class

Instructions: This is an open book, open library, open notes, takehome exam, but you are not to collaborate. The instructor is the only human source you are allowed to consult. Each of the 7 problems is worth approximately the same number of points.

1. (a) How many abelian groups of order 28,000 are there, up to isomorphism? Explain your answer- don't just write down a number.
(b) How many such groups as in (a) contain an element of order 100? Again, explain your answer.
2. Recall for commutative rings R, the general linear group over R is

$$
\begin{aligned}
G L_{n}(R) & :=\left\{A \in R^{n \times n}: A \text { has an inverse in } R^{n \times n}\right\} \\
& =\left\{A \in R^{n \times n}: \operatorname{det}(A) \in R^{\times}\right\} .
\end{aligned}
$$

(a) Let p be a prime, and $\mathbb{F}_{p}:=\mathbb{Z} / p \mathbb{Z}$, a finite field with p elements. Write down the cardinality of $G L_{n}\left(\mathbb{F}_{p}\right)$ as a function of n and p.
(b) Write down the cardinality of $G L_{n}(\mathbb{Z} / 105 \mathbb{Z})$ as a function of n.
3. Let \mathbb{F}_{p} be a finite field with p elements, and $V=\mathbb{F}_{p}^{n}$, an n dimensional vector space over \mathbb{F}_{p}. Let $G(k, V)=G\left(k, \mathbb{F}_{p}^{n}\right)$ denote the set of all k-dimensional \mathbb{F}_{p}-linear subspaces of V.
(a) The group $G L(V)=G L_{n}\left(\mathbb{F}_{p}\right)$ acts on V, and takes \mathbb{F}_{p}-subspaces to \mathbb{F}_{p}-subspaces, preserving dimension, so that it acts on $G(k, V)$. Show that this action on $G(k, V)$ is transitive.
(b) Let P_{k} be the subgroup P of $G L(V)$ which is the stabilizer of the particular k-dimensional subspace of V spanned by the first k standard basis vectors. Writing elements of $G L(V)$ as $n \times n$ matrices in block form

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

where $A \in \mathbb{F}^{k \times k}, B \in \mathbb{F}^{k \times(n-k)}, C \in \mathbb{F}^{(n-k) \times k}, D \in \mathbb{F}^{(n-k) \times(n-k)}$, identify the elements of P_{k} by saying what are the conditions on A, B, C, D for
this matrix to lie in P_{k}.
(c) Find the cardinality of $G(k, V)$, as a function of k, n and p.
4. Let G_{1}, G_{2} be simple groups, and $N \triangleleft G_{1} \times G_{2}$. Show that either

- $N=\{e\}$, or
- $N=G_{1} \times G_{2}$, or
- N is isomorphic to one of G_{1} or G_{2}.

5. Given a linear operator $\varphi: V \rightarrow V$ on a finite-dimensional \mathbb{F}-vector space V, define its trace $\operatorname{Tr}_{V}(\varphi)$ by making a choice of an ordered basis $\left(v_{1}, \ldots, v_{n}\right)$ for V in which to express φ by an $n \times n$ matrix $A=\left(a_{i j}\right)_{i, j=1,2, \ldots, n}$, and then setting

$$
\operatorname{Tr}(\varphi)=\operatorname{Tr}(A):=\sum_{i=1}^{n} a_{i, i} .
$$

(a) Show that $\operatorname{Tr}(\varphi)$ is well-defined, that is, independent of the choice of the basis $\left(v_{1}, \ldots, v_{n}\right)$ for V.
(b) Given an \mathbb{F}-linear subspace $W \subseteq V$ with $\varphi(W) \subset W$, show that the restriction map φ_{W} on W and the induced map $\varphi_{V / W}$ on the quotient V / W satisfy

$$
\operatorname{Tr}(\varphi)=\operatorname{Tr}\left(\varphi_{W}\right)+\operatorname{Tr}\left(\varphi_{V / W}\right) .
$$

6. Let G be a group of order $p q r$ with primes $p<q<r$ and q not dividing $r-1$. Show that if there exists a normal subgroup $N \triangleleft G$ having $|N|=p$, then G is cyclic.
7. Let G be a group, and $\operatorname{Aut}(G)$ its automorphism group. Show that $\operatorname{Aut}(G)$ cyclic implies G abelian.
(Hint: Consider the homomorphism $\varphi: G \rightarrow \operatorname{Aut}(G)$ that sends g to the automorphism $\left(x \mapsto g x g^{-1}\right)$. What is $\operatorname{ker}(\varphi)$?)
