Math 8201 Graduate abstract algebra- Fall 2013, Vic Reiner Midterm exam 1- Due Wednesday October 16, in class

Instructions: This is an open book, library, notes, web, take-home exam, but you are not to collaborate. The instructor is the only human source you are allowed to consult. Indicate outside sources used.

1. (15 points total; 5 points each part)

Inside $G:=G L_{n}(\mathbb{Z} / 17 \mathbb{Z})$, consider the subset H consisting of those matrices A having $\operatorname{det} A \in\{ \pm \overline{1}, \pm \overline{4}\}$.
(a) Show H is a normal subgroup of G.
(b) Identify the group G / H up to isomorphism.
(c) Compute $|H|$ as a function of n.
2. (15 points total) Let H, K be two subgroups and g any element, in a finite group G.
(a) (5 points) Prove

$$
\left|g^{-1} H g \cap K\right|=\left|H \cap g K g^{-1}\right|
$$

(b) (10 points) Prove

$$
|H g K|=\frac{|H||K|}{\left|g^{-1} H g \cap K\right|} \quad\left(=\frac{|H||K|}{\left|H \cap g K g^{-1}\right|} \text { by part (a) }\right)
$$

3. (30 point total; 5 points each part) Prove or disprove:
(i) $D_{12} \cong \mathbb{Z} / 2 \mathbb{Z} \times D_{6}$ as groups.
(ii) $D_{16} \cong \mathbb{Z} / 2 \mathbb{Z} \times D_{8}$ as groups.
(iii) $\mathbb{R}^{\times} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{R}^{+}$as groups.
(iv) For g, h in a finite group, the order of the product $g h$ divides the product of the orders of g and h.
(v) This group is simple:

$$
S L_{7}(\mathbb{Z} / 120 \mathbb{Z}):=\left\{A \in(\mathbb{Z} / 120 \mathbb{Z})^{7 \times 7}: \operatorname{det} A=\overline{1}\right\}
$$

(vi) This group is simple:

$$
S L_{7}(\mathbb{Z} / 121 \mathbb{Z}):=\left\{A \in(\mathbb{Z} / 121 \mathbb{Z})^{7 \times 7}: \operatorname{det} A=\overline{1}\right\}
$$

4. (10 points) Let let H be a normal subgroup of a finite G, and assume that $|H|=p$ is the smallest prime number dividing $|G|$. Show that $H \leq Z(G)$, the center of G.
(Hint: Consider the action of G on H via conjugation, that is, g sends h to $g h g^{-1}$. Also note that the identity e in H is fixed under this action by every g in G.)
5. (15 points total) Let G be a finite group G acting on a finite set A.
(a) (5 points) Count in two ways the cardinality $|\{(g, a) \in G \times A: g(a)=a\}|$ to prove

$$
|G| \cdot \mid\{G \text {-orbits } \mathcal{O} \text { on } A\}\left|=\sum_{g \in G}\right|\{a \in A: g(a)=a\} \mid .
$$

(b) (10 points) Use (a) to compute the number of orbits of the dihedral group D_{10} of cardinality 10 on the set A of cardinality $|A|=k^{10}$ consisting of all colorings with k colors of these dihedrally symmetric points:

For example with $k=2$ colors black and white, among the 2^{10} colorings, these three lie in the same orbit

since the first two differ by reflecting across a vertical line, and the last two differ by $\frac{2 \pi}{5}$ rotation.
(Hint: your answer should end up being a polynomial function of k.)
6. (15 points total) Let G be a group.
(a) (10 points) For $H \leq G$ a subgroup with finite index $n=[G: H]$, show that H contains a subgroup N which is normal in G, that is, $N \triangleleft G$, and has index [$G: N$] dividing n !.
(Hint: let G act on G / H by left-translation, that is, g sends the coset $a H$ to the coset $g a H$)
(b) (5 points) For subgroups H_{1}, H_{2} of G, both of finite index in G, show $H_{1} \cap H_{2}$ also has finite index in G.

