Math 8201 Graduate abstract algebra- Fall 2019, Vic Reiner Final exam - Due Wednesday December 11, in class

Instructions: This is an open book, library, web, notes, take-home exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult. Indicate outside sources used.

1. (20 points total; 5 points each part) Prove or disprove:
(a) If a group G contains three normal subgroups $N_{1}, N_{2}, N_{3} \triangleleft G$ with $N_{1} N_{2} N_{3}=G$ and $N_{1} \cap N_{2} \cap N_{3}=\{e\}$, then $G \cong N_{1} \times N_{2} \times N_{3}$.
(b) One can find a linear operator $V \xrightarrow{\pi} V$ on a finite-dimensional \mathbb{F}_{2}-vector space V which satisfies $\pi^{2}=\pi$ but is not diagonalizable.
(c) One can find a linear operator $V \xrightarrow{\pi} V$ on a finite-dimensional \mathbb{F}_{2}-vector space V which satisfies $\pi^{3}=\pi$ but is not diagonalizable.
(d) A matrix A in $\mathbb{C}^{n \times n}$ has $\operatorname{det}\left(t \cdot I_{n}-A\right)=t^{n}$ if and only if $A^{n}=0$.
2. (20 points total) Let σ be a permutation in the symmetric group S_{n}, and A_{σ} its associated $n \times n$ permutation matrix, that is,

$$
\left(A_{\sigma}\right)_{i, j}= \begin{cases}1 & \text { if } \sigma(j)=i \\ 0 & \text { otherwise }\end{cases}
$$

(a) (5 points) If σ is an n-cycle, prove that $\operatorname{det}\left(t \cdot I_{n}-A_{\sigma}\right)=t^{n}-1$.
(b) (5 points) If σ has cycle decomposition $\sigma=\sigma^{(1)} \sigma^{(2)} \cdots \sigma^{(k)}$ in which $\sigma^{(i)}$ is an n_{i}-cycle for each $i=1,2, \ldots, k$, prove that

$$
\operatorname{det}\left(t \cdot I_{n}-A_{\sigma}\right)=\prod_{i=1}^{k}\left(t^{n_{i}}-1\right)
$$

(c) (10 points) If σ is a $(p-1)$-cycle for some prime number p, prove that when working over the finite field \mathbb{F}_{p}, the matrix A_{σ} in $\mathbb{F}_{p}^{(p-1) \times(p-1)}$ is diagonalizable.
3. (20 points total) Let V be an n-dimensional vector space over a field \mathbb{F}. Call a linear operator $V \xrightarrow{\varphi} V$ a transvection if there exists an $(n-1)$-dimensional subspace $W \subset V$ and a vector $v \in V \backslash W$, such that $\varphi(w)=w$ for all w in W, but $\varphi(v)=v+w_{0}$ for some $w_{0} \in W \backslash\{\mathbf{0}\}$.
(a) (10 points) Prove all transvections are conjugate within $G L(V)\left(\cong G L_{n}(\mathbb{F})\right)$.
(b) (5 points) Prove transvections have $\operatorname{det}(\varphi)=1$, so they lie in $S L(V)\left(\cong S L_{n}(\mathbb{F})\right)$.
(c) (5 points) Prove that these two matrices A_{1}, A_{2} in $\mathbb{R}^{2 \times 2}$

$$
A_{1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]
$$

both representation transvections $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, but are not conjugate within $S L_{2}(\mathbb{R})$.
4. (15 points) Given \mathbb{F}-vector spaces V, W with ordered bases $\left(v_{1}, \ldots, v_{n}\right)$ for V and $\left(w_{1}, \ldots, w_{m}\right)$ for W, recall that $V \otimes W$ has basis $\left\{v_{i} \otimes w_{j}\right\}_{\substack{i=1, \ldots, n \\ j=1, \ldots, m}}^{\substack{1, \ldots}}$, that is, every tensor t in $V \otimes W$ can be written uniquely as

$$
t=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i, j} v_{i} \otimes w_{j}
$$

for some matrix of coefficients $A=\left(a_{i j}\right)$ in $\mathbb{F}^{n \times m}$.
Recall t is decomposable if $t=v \otimes w$ for some $v \in V, w \in W$. Show that tensor $t=\sum_{i, j} a_{i, j} v_{i} \otimes w_{j}$ is decomposable if and only if the matrix A has rank 0 or 1 .
5. (25 points total, 5 points each part)
(a) Given abelian groups A, B, show that the set $\operatorname{Hom}(A, B)$ of all group homomorphisms $A \xrightarrow{\varphi} B$ becomes an abelian group when endowed with pointwise addition: $\left(\varphi_{1}+\varphi_{2}\right)(a):=\varphi_{1}(a)+\varphi_{2}(a)$.
(b) Given abelian groups A, B, C, and a homomorphism $B \xrightarrow{f} C$, show that one obtains a homomorphism $\operatorname{Hom}(A, B) \xrightarrow{\tilde{f}} \operatorname{Hom}(A, C)$ as follows: for φ in $\operatorname{Hom}(A, B)$, define $\tilde{f}(\varphi):=f \circ \varphi$, that is, $\tilde{f}(\varphi)(a):=f(\varphi(a))$. Show furthermore that
(i) given homomorphisms $B \xrightarrow{f} C \xrightarrow{g} D$ one has

$$
\widetilde{g \circ f}=\tilde{g} \circ \tilde{f}: \operatorname{Hom}(A, B) \rightarrow \operatorname{Hom}(A, D)
$$

(ii) and the identity map $B \xrightarrow{1_{B}} B$ has $\tilde{1}_{B}=1_{\operatorname{Hom}(A, B)}$.
(c) Given abelian groups A, B, C, D, and a short exact sequence

$$
0 \rightarrow B \xrightarrow{f} C \xrightarrow{g} D \rightarrow 0
$$

show that the induced maps \tilde{f}, \tilde{g} give rise to a sequence

$$
0 \rightarrow \operatorname{Hom}(A, B) \xrightarrow{\tilde{f}} \operatorname{Hom}(A, C) \xrightarrow{\tilde{g}} \operatorname{Hom}(A, D)
$$

which is exact at the positions $\operatorname{Hom}(A, B)$ and $\operatorname{Hom}(A, C)$.
(d) Assume in the set-up of part (c) that the sequence is split short exact, meaning one can relabel B, C, D so that $C=B \oplus D(=B \times D)$ with

- $f: B \rightarrow C$ the injection $f(b)=(b, 0)$, and
- $g: C \rightarrow D$ the surjection $g(b, d)=d$.

Show that this whole sequence is exact:

$$
0 \rightarrow \operatorname{Hom}(A, B) \xrightarrow{\tilde{f}} \operatorname{Hom}(A, C) \xrightarrow{\tilde{g}} \operatorname{Hom}(A, D) \rightarrow 0 .
$$

(e) Consider the following example of part (c),

$$
\begin{array}{ccccc}
& & C & D & \\
& & & & \\
\\
0 \rightarrow & & & \| & \\
\mathbb{Z} / 2 \mathbb{Z} & \xrightarrow{f} & \mathbb{Z} / 4 \mathbb{Z} & \xrightarrow{g} & \mathbb{Z} / 2 \mathbb{Z}
\end{array} \rightarrow 0
$$

where f is inclusion of subgroup $B=\{\overline{0}, \overline{2}\} \cong \mathbb{Z} / 2 \mathbb{Z}$ into $C=\mathbb{Z} / 4 \mathbb{Z}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$, and g is the reduction map

\[

\]

Show that when one takes $A=\mathbb{Z} / 2 \mathbb{Z}$, then this sequence

$$
0 \rightarrow \operatorname{Hom}(A, \mathbb{Z} / 2 \mathbb{Z}) \xrightarrow{\tilde{f}} \operatorname{Hom}(A, \mathbb{Z} / 4 \mathbb{Z}) \xrightarrow{\tilde{g}} \operatorname{Hom}(A, \mathbb{Z} / 2 \mathbb{Z}) \rightarrow 0
$$

fails to be exact in one of its positions, namely the one corresponding to $\operatorname{Hom}(A, D)$, that is, the rightmost occurrence of $\operatorname{Hom}(A, \mathbb{Z} / 2 \mathbb{Z})$.

