Math 8201 Graduate abstract algebra- Fall 2019, Vic Reiner Midterm exam 2- Due Wednesday November 20, in class

Instructions: This is an open book, library, notes, web, take-home exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult. Indicate any outside sources that you use. Note: In any problem with multiple parts, feel free to assume the assertions in any previous part when doing the next part, even if you didn't complete them.

1. (20 points total; 5 points each part) Prove or disprove:
(a) (5 points) For any subgroup H of a group G, the abelianization H^{ab} is isomorphic to a subgroup of G^{ab}.
(b) (5 points) A vector space V over a field can be isomorphic to one of its own proper subspaces $U \subsetneq V$.
(c) (5 points) A vector space V is finite-dimensional if and only if its dual V^{*} is also finite-dimensional.
(d) (5 points) Let V be a vector space over $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ for a prime p, and let $V^{+}=(V,+)$ denotes its additive group structure. Then a subset $U \subset V$ is an \mathbb{F}_{p}-subspace if and only if $U^{+} \subset V^{+}$is a subgroup.
2. (25 points total; 5 points each part) Let $\varphi: V \rightarrow V$ be a linear operator on a vector space V over a field.
(a) Show that if $\operatorname{im}\left(\varphi^{m+1}\right)=\operatorname{im}\left(\varphi^{m}\right)$ for some integer $m \geq 1$, then $\operatorname{im}\left(\varphi^{N}\right)=\operatorname{im}\left(\varphi^{m}\right)$ for all $N \geq m$.
(b) Show that if $\operatorname{ker}\left(\varphi^{m+1}\right)=\operatorname{ker}\left(\varphi^{m}\right)$, for some integer $m \geq 1$, then $\operatorname{ker}\left(\varphi^{N}\right)=\operatorname{ker}\left(\varphi^{m}\right)$ for all $N \geq m$.
(c) Assuming that V is finite-dimensional, show that $\operatorname{im}\left(\varphi^{m+1}\right)=\operatorname{im}\left(\varphi^{m}\right)$ if and only if $\operatorname{ker}\left(\varphi^{m+1}\right)=\operatorname{ker}\left(\varphi^{m}\right)$.
(d) Give an example of $\varphi: V \rightarrow V$ with V infinite-dimensional where the conclusion of part (c) fails.
(e) Assume that V has finite dimension n, and $\varphi: V \rightarrow V$ satisfies $\varphi^{m}=0$ for some integer $m \geq 1$, meaning $\varphi^{m}(v)=\mathbf{0}$ for all v in V. Show that $\varphi^{n}=0$.
3. (20 points) Let G be a finite group,

- with $|G|=p q r$ for primes $p<q<r$,
- with q not dividing $r-1$, and
- containing a normal subgroup $N \triangleleft G$ having $|N|=p$.

Prove that G is cyclic.
4. (20 points total; 5 points each part) Recall that a sequence of groups and homomorphisms

$$
\cdots \xrightarrow{f_{i+2}} G_{i+1} \xrightarrow{f_{i+1}} G_{i} \xrightarrow{f_{i}} G_{i-1} \xrightarrow{f_{i-1}} \cdots
$$

is called exact if $\operatorname{ker}\left(f_{i}\right)=\operatorname{im}\left(f_{i+1}\right)$ for all i.
(a) (5 points) Given a short exact sequence of finite groups $1 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 1$, prove $|B|=|A||C|$.
(b) (5 points) Given an exact sequence of finite groups

$$
1 \longrightarrow G_{\ell} \xrightarrow{f_{\ell}} G_{\ell-1} \xrightarrow{f_{\ell-1}} \cdots \xrightarrow{f_{3}} G_{2} \xrightarrow{f_{2}} G_{1} \xrightarrow{f_{1}} G_{0} \longrightarrow 1
$$

prove that these two sequences are also exact for each m :

$$
\begin{aligned}
& 1 \longrightarrow G_{\ell} \xrightarrow{f_{\ell}} G_{\ell-1} \xrightarrow{f_{\ell-1}} \ldots \xrightarrow{f_{m+1}} G_{m} \xrightarrow{f_{m}} \operatorname{im}\left(f_{m}\right) \rightarrow 1 \\
& 1 \longrightarrow \operatorname{ker}\left(f_{m-1}\right) \longrightarrow G_{m-1} \xrightarrow{f_{m-1}} \cdots \xrightarrow{f_{3}} G_{2} \xrightarrow{f_{2}} G_{1} \xrightarrow{f_{1}} G_{0} \longrightarrow 1
\end{aligned}
$$

(Here the map $\operatorname{ker}\left(f_{m-1}\right) \longrightarrow G_{m-1}$ is simply the inclusion of the kernel as a subgroup.)
(c) (5 points) Prove that if one is given an exact sequence as in part (b), then

$$
\left|G_{1}\right|\left|G_{3}\right|\left|G_{5}\right| \cdots=\left|G_{0}\right|\left|G_{2}\right|\left|G_{4}\right| \cdots
$$

(d) (5 points) Given an exact sequence of finite-dimensional vector spaces $\left\{V_{i}\right\}$ over a field \mathbb{F}

$$
0 \xrightarrow{f_{\ell+1}} V_{\ell} \xrightarrow{f_{\ell}} V_{\ell-1} \xrightarrow{f_{\ell-1}} \cdots \xrightarrow{f_{3}} V_{2} \xrightarrow{f_{2}} V_{1} \xrightarrow{f_{1}} V_{0} \xrightarrow{f_{0}} 0,
$$

prove that this alternating sum vanishes:

$$
\operatorname{dim}_{\mathbb{F}} V_{0}-\operatorname{dim}_{\mathbb{F}} V_{1}+\operatorname{dim}_{\mathbb{F}} V_{2}-\cdots+(-1)^{\ell} \operatorname{dim}_{\mathbb{F}} V_{\ell}=0
$$

5. (15 points total; 5 points each part)

Let G_{1} be a finite group, and $G_{1} \xrightarrow{\pi} G_{2}$ a surjective group homomorphism. Also, fix a prime p.
(a) Prove that every p-Sylow subgroup P_{1} in G_{1} has image $\pi\left(P_{1}\right)$ which is a p-Sylow subgroup of G_{2}.
(b) Conversely, prove that for every p-Sylow subgroup P_{2} of G_{2}, there exists at least one p-Sylow subgroup P_{1} of G_{1} having $\pi\left(P_{1}\right)=P_{2}$.
(c) Prove the numbers $n_{p}\left(G_{1}\right), n_{p}\left(G_{2}\right)$ of p-Sylow subgroups in G_{1}, G_{2}, respectively, have $n_{p}\left(G_{1}\right) \geq n_{p}\left(G_{2}\right)$.

