Math 8202 Graduate abstract algebra Spring 2011, Vic Reiner
 Midterm exam 2- Due Friday April 1, in class

Instructions: This is an open book, open library, open notes, takehome exam, but you are not to collaborate. The instructor is the only human source you are allowed to consult.

1. (15 points total) Consider the matrix

$$
A=\left[\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 3 & -1 \\
-1 & -1 & -1 & 3
\end{array}\right]
$$

(a) (5 points) Express the \mathbb{Z}-module $\operatorname{coker}\left(\mathbb{Z}^{4} \xrightarrow{A} \mathbb{Z}^{4}\right):=\mathbb{Z}^{4} / \operatorname{im}(A)$ as a direct sum of cyclic \mathbb{Z}-modules.
(b) (5 points) Write down the unique representative for the similarity class of A in $\mathbb{C}^{4 \times 4}$ in Jordan canonical form over \mathbb{C}.
(c) (5 points) Write down the unique representative for the similarity class of A in $\mathbb{C}^{4 \times 4}$ in rational canonical form over \mathbb{C}.
2.(15 points total) Compute the ranks (with explanation) for the following \mathbb{Z}-modules:
(a) (5 points) $\operatorname{coker}\left(\mathbb{Z}^{4} \xrightarrow{A} \mathbb{Z}^{4}\right)$ where A is the matrix in Problem 1.
(b) (5 points) \mathbb{Q}
(c) (5 points) \mathbb{Q} / \mathbb{Z}
3. (15 points) Prove, or disprove by counterexample: for any domain R, not necessarily a PID, and any finitely generated R-module M, there exists an R-submodule $F \subset M$ with F free and $M \cong F \oplus \operatorname{Tor} M$. (Here Tor $M:=\{m \in M: \exists r \in R \backslash\{0\}$ with $r m=0\}$.)
4. (15 points) Let $\mathbb{F} \subset \mathbb{K}$ be an extension of fields with $[\mathbb{K}: \mathbb{F}]=n$, and let $f(x) \in \mathbb{F}[x]$ be an irreducible polynomial with degree d. If $\operatorname{gcd}(d, n)=1$, show that $f(x)$ remains irreducible when considered as an element of $\mathbb{K}[x]$.
5. (15 points) Dummit and Foote, $\S 13.2$, Problem 17, on page 530.
6. (25 points total) For a (not necessarily commutative) ring R, and a sequence of (left) R-modules M_{i} and R-module homomorphisms

$$
\cdots \rightarrow M_{i+1} \xrightarrow{f_{i+1}} M_{i} \xrightarrow{f_{i}} M_{i-1} \rightarrow \cdots
$$

say that the sequence is

- a complex if $\operatorname{im}\left(f_{i+1}\right) \subset \operatorname{ker}\left(f_{i}\right)$ for each i, i.e. $f_{i} \circ f_{i+1}=0$,
- exact at M_{i} if $\operatorname{im}\left(f_{i+1}\right)=\operatorname{ker}\left(f_{i}\right)$, and
- an exact sequence if it is exact at M_{i} for every i.
(a) (3 points) Explain why a sequence of the form
- $0 \rightarrow A \xrightarrow{\alpha} B$ is exact at A if and only if α is injective,
- $B \xrightarrow{\beta} C \rightarrow 0$ is exact at C if and only if β is surjective,
- $0 \rightarrow A \xrightarrow{\alpha} B \rightarrow 0$ is exact if and only if α is an isomorphism,
- $0 \rightarrow B \rightarrow 0$ is exact at B if and only if $B=0$.
- $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is exact if and only if B contains an R-submodule A^{\prime} isomorphic to A for which B / A^{\prime} is isomorphic to C. These are called short exact sequences.
(b) (2 points) Show that every homomorphism $\alpha: A \rightarrow B$ gives rise to a short exact sequence of the form $0 \rightarrow \operatorname{ker}(\alpha) \rightarrow A \rightarrow \operatorname{im}(\alpha) \rightarrow 0$, and also to an exact sequence $0 \rightarrow \operatorname{ker}(\alpha) \rightarrow A \xrightarrow{\alpha} B \rightarrow \operatorname{coker}(\alpha) \rightarrow 0$
(c) (5 points) Show that an exact sequence of R-modules

$$
0 \rightarrow M_{\ell} \rightarrow \cdots \rightarrow M_{1} \rightarrow M_{0} \rightarrow 0
$$

for a domain R with $\operatorname{rank}_{R} M_{i}$ finite implies $\sum_{i=0}^{\ell}(-1)^{i} \operatorname{rank}_{R} M_{i}=0$. (Hint: the case where one has a short exact sequence, that is, $\ell=2$, was mentioned in lecture and proven on homework, so it may be assumed.)
(d) (5 points) An exact sequence $\cdots \rightarrow F_{2} \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ with each F_{i} a free R-module is called a free resolution of M. Show that every R-module has a free resolution, although the free modules F_{i} might not be of finite rank, and the resolution itself may be infinite.
(e) (5 points) Show that a finitely generated R-module over a Noetherian ring R has a free resolution with each F_{i} a free R-module of some finite rank, that is, $F_{i} \cong R^{\beta_{i}}$ for some positive integers β_{i}.
(f) (5 points) Show that if R is a principal ideal domain and M is a finitely generated R-module, one can choose a free resolution as in (e) in the form $0 \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$.

