Math 8202 Graduate abstract algebra- Spring 2014, Vic Reiner Midterm exam 2- Due Wednesday April 9, in class

Instructions: This is an open book, library, notes, web, take-home exam, but you are not to collaborate. The instructor is the only human source you are allowed to consult. Indicate outside sources used. All calculations must be shown, written out by hand.

1. (25 points total; 5 points each)

Recall that for a PID R, a finitely generated R-module M can be expressed uniquely in either of two forms:

- (invariant factors)

$$
M=R^{r} \oplus \bigoplus_{i=1}^{t} R /\left(a_{i}\right)
$$

with $r, t \geq 0$ and a_{i} in $R \backslash R^{\times}$such that a_{i} divides a_{i+1} for $1 \leq i \leq t-1$, or

- (elementary divisors)

$$
M=R^{r} \oplus \bigoplus_{j=1}^{s} R /\left(p_{j}^{\alpha_{j}}\right)
$$

with $r, s \geq 0$ and $\alpha_{j}>0$, and the p_{j} are irreducibles in R.
For parts (a), (b), consider the cyclic $\mathbb{Z}[i]$-module $\mathbb{Z}[i] / I$ where I is the principal ideal

$$
I=\left(1300 \cdot(1+i)^{3} \cdot(3-2 i)^{4}\right) \subset \mathbb{Z}[i]
$$

(a) Express this cyclic $\mathbb{Z}[i]$-module in its invariant factor form.
(b) Express this cyclic $\mathbb{Z}[i]$-module in its elementary divisor form.

For parts (c),(d),(e), regard this matrix T

$$
T=\left[\begin{array}{ccc}
6 & -3 & -3 \\
-3 & 6 & -3 \\
-3 & -3 & 6
\end{array}\right]
$$

as defining a \mathbb{Z}-module map $\mathbb{Z}^{3} \xrightarrow{T} \mathbb{Z}^{3}$.
(c) Express the \mathbb{Z}-module $\operatorname{coker}(T)$ in invariant factor form.
(d) Express the \mathbb{Z}-module $\operatorname{ker}(T)$ in invariant factor form.
(e) Express the \mathbb{Z}-module $\operatorname{im}(T)$ in invariant factor form.
2. (25 points total; 5 points each)

Prove or disprove the following statements.
(a) Every $\mathbb{Z} / 4 \mathbb{Z}$-submodule of the free module $(\mathbb{Z} / 4 \mathbb{Z})^{100}$ is free.
(b) Every $\mathbb{Z} / 5 \mathbb{Z}$-submodule of the free module $(\mathbb{Z} / 5 \mathbb{Z})^{100}$ is free.
(c) Every $\mathbb{Z}[i]$-submodule of the free module $(\mathbb{Z}[i])^{100}$ is free.
(d) Matrices T in $\mathbb{F}_{5}^{n \times n}$ satisfying $T^{5}=T$ are diagonalizable over \mathbb{F}_{5}.
(e) Matrices T in $\mathbb{F}_{2}^{n \times n}$ satisfying $T^{5}=T$ are diagonalizable over \mathbb{F}_{2}.
3. (10 points) How many different similarity classes of matrices in $\mathbb{Q}^{14 \times 14}$ have (simultaneously)

- their minimal polynomial equal to $x^{5}(x+1)^{3}(x+2)^{2}$, and
- their characteristic polynomial equal to $x^{8}(x+1)^{4}(x+2)^{2}$?

4. (a) (5 points) Regard $V=\mathbb{R}^{2}$ as an $\mathbb{R}[x]$-module in which x acts on V via the matrix

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

How many $\mathbb{R}[x]$-submodules $W \subseteq V$ are there, counting both $W=\{0\}$ and $W=V$ among them?
(b) (10 points) Regard $V=\mathbb{C}^{n}$ as a $\mathbb{C}[x]$-module in which x acts on V via a matrix T in $\mathbb{C}^{n \times n}$. Assuming that $\operatorname{det}(x I-T)=x^{n}-1$, how many $\mathbb{C}[x]$-submodules $W \subseteq V$ are there?
(Your answer should be a function of n.)
5. (10 points) Given R a PID and M a finitely generated R-module, prove that there exist $\beta_{0}, \beta_{1} \geq 0$ and an exact sequence of R-modules of the form

$$
0 \rightarrow R^{\beta_{1}} \rightarrow R^{\beta_{0}} \rightarrow M \rightarrow 0
$$

6. (a) (5 points) Consider a field extension $\mathbb{F} \subset \mathbb{K}$ of degree $[\mathbb{K}: \mathbb{F}]=n$. Show that irreducible polynomials $f(x)$ in $\mathbb{F}[x]$ having degree $\operatorname{deg}(f)$ relatively prime to n always remain irreducible in the larger ring $\mathbb{K}[x]$.
(b) (10 points) Show that if a prime $p \neq 5$ has neither $p-1$ nor $p^{2}-1$ divisible by 5 , then the polynomial

$$
x^{4}+x^{3}+x^{2}+x+1\left(=\frac{x^{5}-1}{x-1}\right)
$$

will be irreducible in $\mathbb{F}_{p}[x]$.

