Math 8202 Graduate abstract algebra- Spring 2020, Vic Reiner Final exam- Due Wednesday May 13, sent in PDF via email

Instructions: This is an open book, library, notes, web, take-home exam, but you are *not* to collaborate. The instructor is the only human source you are allowed to consult. Indicate outside sources used.

1. (40 points total; 5 points each) True or false; prove or disprove.

(a) Let \mathbb{K}/\mathbb{Q} be a degree 4 Galois extension with $\operatorname{Aut}(\mathbb{K}/\mathbb{Q}) = V_4$, the Klein-four group inside S_4 . Then there is at least one *irreducible* degree 4 polynomial f(x) in $\mathbb{Q}[x]$ for which \mathbb{K} is the splitting field over \mathbb{Q} .

(b) Let \mathbb{K}/\mathbb{Q} be a degree 4 Galois extension with $\operatorname{Aut}(\mathbb{K}/\mathbb{Q}) = V_4$, the Klein-four group inside S_4 . Then there is at least one *reducible* degree 4 polynomial g(x) in $\mathbb{Q}[x]$ for which \mathbb{K} is the splitting field over \mathbb{Q} .

(c) Let R be a PID, and $A = (a_{ij})$ in $\mathbb{R}^{m \times n}$ with Smith normal form matrix S having nonzero diagonal entries d_1, d_2, \ldots, d_r , with d_i dividing d_{i+1} for $i = 1, 2, \ldots, r-1$. Then

$$d_1 = \gcd\left(\{a_{ij}\}_{\substack{i=1,2,...,m\\j=1,2,...,n}}\right)$$

(d) The splitting field \mathbb{K} for $x^3 - 13x + 13$ over \mathbb{Q} has $\operatorname{Aut}(\mathbb{K}/\mathbb{Q})$ isomorphic to the symmetric group S_3 .

(e) There are no solutions to $a^2 + b^2 + c^2 + d^2 = -1$ with $(a, b, c, d) \in \mathbb{K}^4$ if $\mathbb{K} := \mathbb{Q}(\omega\sqrt[3]{2})$ with $\omega := e^{\frac{2\pi i}{3}}$

(f) One has an abelian group isomorphism

 $\mathbb{Z}/14\mathbb{Z} \oplus \mathbb{Z}/33\mathbb{Z} \oplus \mathbb{Z}/65\mathbb{Z} \cong \mathbb{Z}/30\mathbb{Z} \oplus \mathbb{Z}/1001\mathbb{Z}$

- (g) Matrices A in $\mathbb{F}_5^{n \times n}$ satisfying $A^5 = A$ are diagonalizable over \mathbb{F}_5 .
- (h) Matrices A in $\mathbb{F}_2^{n \times n}$ satisfying $A^5 = A$ are diagonalizable over \mathbb{F}_2 .

 $\mathbf{2}$

2. (20 points total; 10 points each part).

(a) Regard $V = \mathbb{R}^2$ as an $\mathbb{R}[x]$ -module in which x acts on V via the matrix

 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$

How many $\mathbb{R}[x]$ -submodules $W \subseteq V$ are there, counting both $W = \{0\}$ and W = V among them?

(b) Regard $V = \mathbb{C}^n$ as a $\mathbb{C}[x]$ -module in which x acts on V via a matrix A in $\mathbb{C}^{n \times n}$. Assuming that $\det(xI - A) = x^n - 1$, how many $\mathbb{C}[x]$ -submodules $W \subseteq V$ are there? (Your answer should be a function of n.)

- 3. (20 points) How many different similarity classes of matrices in $\mathbb{Q}^{14\times 14}$ have (simultaneously)
 - their minimal polynomial equal to $x^5(x+1)^3(x+2)^2$, and
 - their characteristic polynomial equal to $x^8(x+1)^4(x+2)^2$?

4. (20 points total)

Regard this matrix A in $\mathbb{Z}^{3 \times 3}$,

$$A = \begin{bmatrix} 6 & -3 & -3 \\ -3 & 6 & -3 \\ -3 & -3 & 6 \end{bmatrix},$$

as defining a \mathbb{Z} -module map $\mathbb{Z}^3 \xrightarrow{A} \mathbb{Z}^3$ via $x \mapsto Ax$.

- (a) (8 points) Express the \mathbb{Z} -module coker(A) in invariant factor form.
- (b) (6 points) Express the \mathbb{Z} -module ker(A) in invariant factor form.
- (c) (6 points) Express the \mathbb{Z} -module im(A) in invariant factor form.