Math 8202 Graduate abstract algebra- Spring 2020, Vic Reiner Midterm exam 1- Due Wednesday February 26, in class

Instructions: This is an open book, library, notes, web, take-home exam, but you are not to collaborate. The instructor is the only human source you are allowed to consult. Indicate outside sources used.

1. (25 points total; 5 points each)

True or false; prove or disprove.
(a) If I is an ideal in a commutative ring R with 1 , and R / I is a domain, then R is also a domain.
(b) For n in \mathbb{Z}, there exists an expression $n=a^{2}+b^{2}$ with a, b in \mathbb{Z} if and only if there exists such an expression with a, b in \mathbb{Q}.
(c) For any field \mathbb{F}, the ring of formal power series $\mathbb{F}[[x]]$ has only one prime ideal I with $(0) \subsetneq I \subsetneq(1)$.
(d) For any field \mathbb{F}, the ring of formal power series $\mathbb{F}[[x]]$ has only one radical ideal I with $(0) \subsetneq I \subsetneq(1)$.
(e) Given two ideals $I, J \subset \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ for a field \mathbb{F}, consider the following ideal K inside the larger ring $\mathbb{F}\left[x_{1}, \ldots, x_{n}, t\right]$ having an extra variable t :

$$
K:=(t I)+((1-t) J):=(t \cdot f(\mathbf{x})+(1-t) g(\mathbf{x}): f \in I, g \in J)
$$

Then the intersection $K \cap \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ equals $I \cap J$.
2. (15 points) Give a simple characterization of the integer primes p for which the ideal $I=\left(p, x^{3}+1, x^{2}+1\right)$ in the ring $\mathbb{Z}[x]$ forms a maximal ideal.
3. (20 points total) For integers $a, b, c \geq 1$, consider the quotient ring

$$
R:=\mathbb{F}_{3}[x] /\left((x+2)^{b}\left(x^{2}+x+2\right)^{c}\left(x^{3}+1\right)^{a}\right)
$$

(a) (3 points) Is R a domain?
(b) (7 points) Show that R is finite, and compute (with proof) its cardinality as a function of a, b, c.
(c) (10 points) How many ideals I does R contain, including the ideals $I=(0)$ and $I=(1)=R$? Your answer should again be a function of a, b, c, and must be proven.
4. (25 points total)
(a) (5 points) Prove $x^{3}+y^{3}-1$ is irreducible in $\mathbb{Q}[x, y]$.
(b) (10 points) Prove $x^{n}-p$ is irreducible in $\mathbb{Z}[i][x]$ for all positive integers n and all odd primes p in \mathbb{Z}.
(c) (10 points) Prove $x^{18}+y^{30}+z^{45}$ is reducible in $\mathbb{F}_{3}[x, y, z]$, and irreducible in $\mathbb{F}_{p}[x, y, z]$ for primes $p \neq 3$.
5. (15 points total; 5 points each)

Let \mathbb{F} be a field. A polynomial $f(\mathbf{x}) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is called homogeneous of degree d if every monomial $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ occurring in f with nonzero coefficient has the same degree $d=\sum_{i} a_{i}$.
(a) Given λ in \mathbb{F}, let $f(\lambda \mathbf{x}):=f\left(\lambda x_{1}, \ldots, \lambda x_{n}\right)$. Prove that for $f(\mathbf{x})$ homogeneous of degree d, one has

$$
f(\lambda \mathbf{x})=\lambda^{d} f(\mathbf{x})
$$

(b) Prove that for $f(\mathbf{x})$ homogeneous of degree d, one has $\sum_{i=1}^{n} x_{i} \frac{\partial f}{\partial x_{i}}=d \cdot f(\mathbf{x})$.
(c) Show that every polynomial $f(x, y)$ in $\mathbb{C}[x, y]$ which is homogeneous of degree d can be factored as a product of linear (degree 1) polynomials:

$$
f(x, y)=\prod_{i=1}^{d}\left(\alpha_{i} x+\beta_{i} y\right)
$$

for some $\alpha_{1}, \ldots, \alpha_{d}, \beta_{1}, \ldots, \beta_{d}$ in \mathbb{C}.

