Math 8202 Graduate abstract algebra- Spring 2020, Vic Reiner Midterm exam 2- Due Wednesday April 8, sent in PDF via email

Instructions: This is an open book, library, notes, web, take-home exam, but you are not to collaborate. The instructor is the only human source you are allowed to consult. Indicate outside sources used.

1. (30 points total; 5 points each)

True or false; prove or disprove.
(a) Let \mathbb{K} / \mathbb{F} be a field extension. If \mathbb{K} is the splitting field over \mathbb{F} for some finite list of separable polynomials $\left\{f_{1}, \ldots, f_{n}\right\}$ in $\mathbb{F}[x]$, then \mathbb{K} is the splitting field over \mathbb{F} for a single separable polynomial $f(x)$ in $\mathbb{F}[x]$.
(b) Let \mathbb{K} / \mathbb{F} be a field extension of finite degree. If \mathbb{K} is the splitting field over \mathbb{F} for some possibly infinite family $\left\{f_{i}\right\}_{i \in I}$ of separable polynomials in $\mathbb{F}[x]$, then \mathbb{K} is the splitting field over \mathbb{F} for a single separable polynomial $f(x)$ in $\mathbb{F}[x]$.
(c) Let \mathbb{K} / \mathbb{F} be a field extensions in which \mathbb{K} is the splitting field over \mathbb{F} for an inseparable polynomial $f(x)$. Then \mathbb{K} / \mathbb{F} cannot be a Galois extension.
(d) For $n=10^{9}$, the polynomial $x^{n}-1$ has exactly 100 irreducible factors when considered in $\mathbb{R}[x]$.
(e) For $n=10^{9}$, the polynomial $x^{n}-1$ has exactly 100 irreducible factors when considered in $\mathbb{Q}[x]$.
(f) If α lies in some extension over the field \mathbb{F} with $[\mathbb{F}(\alpha): \mathbb{F}]=n$ and k is a positive integer with $\operatorname{gcd}(k, n)=1$, then $\mathbb{F}\left(\alpha^{k}\right)=\mathbb{F}(\alpha)$.
2. (10 points) Show that if $f(x)$ is irreducible of degree k in $\mathbb{F}[x]$ and $[\mathbb{K}: \mathbb{F}]=n \operatorname{has} \operatorname{gcd}(k, n)=1$, then $f(x)$ remains irreducible when considered in $\mathbb{K}[x]$.
3. (30 points) Let $\zeta=\zeta_{100}:=e^{\frac{2 \pi i}{100}}$, and $\mathbb{K}=\mathbb{Q}(\zeta)$.
(a) (5 points) Is \mathbb{K} / \mathbb{Q} Galois? Explain.
(b) (5 points) Compute $[\mathbb{K}: \mathbb{Q}]$.
(c) (5 points) Identify the isomorphism type of $\operatorname{Aut}(\mathbb{K} / \mathbb{Q})$ as a finite abelian group, that is, to which product of cyclic groups is it isomorphic?
(d) (5 points) How many intermediate subfields \mathbb{L} are there with $\mathbb{Q} \subseteq \mathbb{L} \subseteq \mathbb{K}$, including $\mathbb{L}=\mathbb{Q}, \mathbb{K}$?
(e) (5 points) How many of the subfields \mathbb{L} counted in part (d) have \mathbb{L} / \mathbb{Q} Galois?
(f) (5 points) How many of the subfields counted in part (d) contain $\zeta+\zeta^{-1}$?
4. (10 points total) Let $f(x), g(x)$ lie in $\mathbb{F}[x]$ with $f(x)$ irreducible of degree n. Show that every irreducible factor in $\mathbb{F}[x]$ of the composite polynomial $f(g(x))$ will have degree divisible by n.
5. (20 points total; 5 points each) Let $\mathbb{K}=\mathbb{Q}(\sqrt{p}, \sqrt{q}, \sqrt{r})$ for p, q, r three distinct prime numbers. It can be shown with a bit of tedious checking that $[\mathbb{K}: \mathbb{Q}]=8$, but let's assume that.
(a) Identify the isomorphism type of the group $\operatorname{Aut}(\mathbb{K} / \mathbb{Q})$.
(b) How many intermediate subfields \mathbb{L} are there with $\mathbb{Q} \subseteq \mathbb{L} \subseteq \mathbb{K}$, including $\mathbb{L}=\mathbb{Q}, \mathbb{K}$?
(c) How many of the subfields \mathbb{L} counted in part (b) have \mathbb{L} / \mathbb{Q} Galois?
(d) How many of the subfields counted in part (b) contain $\alpha:=10 \sqrt{p}-3 / 7 \sqrt{r}$?

