Math 8202 Graduate abstract algebra- Spring 2020, Vic Reiner Midterm exam 2- Due Wednesday April 8, sent in PDF via email

Instructions: This is an open book, library, notes, web, take-home exam, but you are *not* to collaborate. The instructor is the only human source you are allowed to consult. Indicate outside sources used.

1. (30 points total; 5 points each) True or false; prove or disprove.

(a) Let \mathbb{K}/\mathbb{F} be a field extension. If \mathbb{K} is the splitting field over \mathbb{F} for some finite list of separable polynomials $\{f_1, \ldots, f_n\}$ in $\mathbb{F}[x]$, then \mathbb{K} is the splitting field over \mathbb{F} for a single separable polynomial f(x) in $\mathbb{F}[x]$.

(b) Let \mathbb{K}/\mathbb{F} be a field extension of *finite degree*. If \mathbb{K} is the splitting field over \mathbb{F} for some possibly infinite family $\{f_i\}_{i \in I}$ of separable polynomials in $\mathbb{F}[x]$, then \mathbb{K} is the splitting field over \mathbb{F} for a single separable polynomial f(x) in $\mathbb{F}[x]$.

(c) Let \mathbb{K}/\mathbb{F} be a field extensions in which \mathbb{K} is the splitting field over \mathbb{F} for an *inseparable* polynomial f(x). Then \mathbb{K}/\mathbb{F} cannot be a Galois extension.

(d) For $n = 10^9$, the polynomial $x^n - 1$ has exactly 100 irreducible factors when considered in $\mathbb{R}[x]$.

(e) For $n = 10^9$, the polynomial $x^n - 1$ has exactly 100 irreducible factors when considered in $\mathbb{Q}[x]$.

(f) If α lies in some extension over the field \mathbb{F} with $[\mathbb{F}(\alpha) : \mathbb{F}] = n$ and k is a positive integer with gcd(k, n) = 1, then $\mathbb{F}(\alpha^k) = \mathbb{F}(\alpha)$.

2. (10 points) Show that if f(x) is irreducible of degree k in $\mathbb{F}[x]$ and $[\mathbb{K} : \mathbb{F}] = n$ has gcd(k, n) = 1, then f(x) remains irreducible when considered in $\mathbb{K}[x]$.

- 3. (30 points) Let $\zeta = \zeta_{100} := e^{\frac{2\pi i}{100}}$, and $\mathbb{K} = \mathbb{Q}(\zeta)$.
- (a) (5 points) Is \mathbb{K}/\mathbb{Q} Galois? Explain.
- (b) (5 points) Compute $[\mathbb{K} : \mathbb{Q}]$.

(c) (5 points) Identify the isomorphism type of $Aut(\mathbb{K}/\mathbb{Q})$ as a finite abelian group, that is, to which product of cyclic groups is it isomorphic?

- (d) (5 points) How many intermediate subfields \mathbb{L} are there with $\mathbb{Q} \subseteq \mathbb{L} \subseteq \mathbb{K}$, including $\mathbb{L} = \mathbb{Q}, \mathbb{K}$?
- (e) (5 points) How many of the subfields \mathbb{L} counted in part (d) have \mathbb{L}/\mathbb{Q} Galois?
- (f) (5 points) How many of the subfields counted in part (d) contain $\zeta + \zeta^{-1}$?

4. (10 points total) Let f(x), g(x) lie in $\mathbb{F}[x]$ with f(x) irreducible of degree n. Show that every irreducible factor in $\mathbb{F}[x]$ of the composite polynomial f(g(x)) will have degree divisible by n.

5. (20 points total; 5 points each) Let $\mathbb{K} = \mathbb{Q}(\sqrt{p}, \sqrt{q}, \sqrt{r})$ for p, q, r three distinct prime numbers. It can be shown with a bit of tedious checking that $[\mathbb{K} : \mathbb{Q}] = 8$, but let's **assume that**.

- (a) Identify the isomorphism type of the group $\operatorname{Aut}(\mathbb{K}/\mathbb{Q})$.
- (b) How many intermediate subfields \mathbb{L} are there with $\mathbb{Q} \subseteq \mathbb{L} \subseteq \mathbb{K}$, including $\mathbb{L} = \mathbb{Q}, \mathbb{K}$?
- (c) How many of the subfields \mathbb{L} counted in part (b) have \mathbb{L}/\mathbb{Q} Galois?
- (d) How many of the subfields counted in part (b) contain $\alpha := 10\sqrt{p} 3/7\sqrt{r}$?