
Math 8669 Introductory Grad Combinatorics

Spring 2010, Vic Reiner

Homework 1- Due Friday February 26, 2010

Hand in at least 6 of the 11 problems.

1. (cf. Stanley, E.C. Vol. I, Chapter 3 Problem 30) A closure relation on a poset
P is a map

P → P

x 7→ x̄

satisfying these three properties:

x ≤ x̄

¯̄x = x̄

x ≤ y ⇒ x̄ ≤ ȳ.

Let P̄ denote the subposet consisting of the closed elements, that is, P̄ is the image
of P or the set of elements with x = x̄.

(a) Show that for any x, y ∈ P̄ one has

µP̄ (x, y) =
∑

y′∈P :x≤ȳ′=y

µP (x, y′).

(b) Deduce that if P is a poset with bottom, top elements 0̂, 1̂ and a closure relation

x 7→ x̄ that restricts to P −{0̂, 1̂} (i.e. 0̂, 1̂ are the only elements whose closures are

0̂, 1̂ respectively), then

µP (0̂, 1̂) = µP̄ (0̂, 1̂).

2. (a) Let x < y < z in a poset P have the property that every element y′ in the
open interval (x, z) is comparable to y. Show that µ(x, z) = 0.

(b) Let x < y < z in a finite lattice have the property that every element y′ in the
open interval (x, z) has y′ ∨ y < z. Show that µ(x, z) = 0.

(Hint for (b): Define a closure relation on the open interval by ȳ′ := y′ ∨ y. Then
try to apply Problem 1(b) followed by part (a) of this problem.)

3. In a finite lattice L, show that µ(x, y) = 0 whenever x is not the meet of all the
co-atoms in in the interval [x, y]. What about if y is not the join of all the atoms
in [x, y]?
(Hint: consider the closure relation on [x, y] which maps

z 7→
∧

coatoms c∈[x,y]:c≥z

c.)

4. Show that for a lattice, one of the distributive laws

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
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implies its dual distributive law

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

(Hint: first show that the inequality

x ∨ (y ∧ z) ≤ (x ∨ y) ∧ (x ∨ z)

is valid in any lattice.)

5. In a finite lattice, the atoms are the elements which cover the bottom element 0̂,
and the coatoms are the elements which are covered by the top element 1̂. Say that
L is atomic if every element is the join of atoms below it,, and that it is coatomic if
every element is the meet of the set of coatoms above it. Say that an element x⊥

is a complement to the element x if x ∨ x⊥ = 1̂ and x ∧ x⊥ = 0̂.
For a finite distributive lattice L, show that the following are equivalent:

(i) L is atomic.
(ii) L is coatomic.
(iii) L is complemented (that is, every element has a complement).
(iv) L = Bn is a Boolean algebra.

6. Extend Birkhoff’s Theorem (The fundamental theorem of finite distributive
lattices) and its inverse associations

{ finite posets } ↔ { finite distributive lattices }
P → J(P )

Irr(L) ← L.

to a result about maps as follows.

A set-map P1
f
→ P2 between two posets is order preserving if x ≤ y implies

f(x) ≤ f(y). A set-map L2
φ
→ L1 is a lattice-morphism if

φ(x ∨ y) = φ(x) ∨ φ(y) and

φ(x ∧ y) = φ(x) ∧ φ(y).

Say that φ is pointed if φ sends 0̂L2
, 1̂L2

to 0̂L1
, 1̂L1

respectively.

(a) Show that an order-preserving map P1
f
→ P2 induces a pointed lattice-morphism

J(P2)
J(f)
→ J(P1) defined by I

J(f)
7→ f−1(I)).

(b) Show that a pointed lattice-morphism L2
φ
→ L1 between two distributive

lattices induces an order-preserving map Irr(L1)
Irr(φ)
→ Irr(L2) defined by x

Irr(φ)
7→

∧

y∈L2:φ(y)≥x y.

(c) Show that

J(f ◦ g) = J(g) ◦ J(f)

J(id) = id

Irr(φ ◦ ψ) = Irr(ψ) ◦ Irr(φ)

Irr(id) = id
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(d) Show that
J(Irr(φ)) = φ

Irr(J(f)) = f

In other words, J and Irr are contravariant functors, and mutually inverse. This
whole set-up is sometimes called Birkhoff-Priestley duality.

7. In a lattice, an element x is called

prime if x ≤ y ∨ z ⇒ x ≤ y or x ≤ z

(join-)irreducible if x = y ∨ z ⇒ x = y or x = z.

(a) Prove that in any lattice, prime implies irreducible, but not conversely.

(b) Prove that the following conditions are equivalent for a finite lattice L (or if
you like, assume only that L satisfies the descending chain condition, i.e. every
descending chain x1 > x2 > · · · must terminate after finitely many steps):

(i) x is prime if and only x is irreducible,
(ii) every x in L has a decomposition x =

∨r

i=1 xi into irreducibles xi, and if
the decomposition is irredundant (that is, no two xi are comparable) then
the set {xi}

r
i=1 uniquely determined by x,

(iii) L is distributive.

8. This problem explores further some of the ways in which the Boolean algebra
Bn should be viewed as the limiting case of vector space lattices Ln(q) when the
order q of the field goes to 1.

(a) Given a k-dimensional Fq-subspace V of Fn
q , show that there is a unique k × n

matrix AV with entries in Fq whose row-space is V and which is in row-reduced
echelon form:

(i) each row ends with a (possibly empty) sequence of zeroes and then has its
last non-zero entry (called a pivot) equal to 1,

(ii) letting ci denote the column index of the pivot entry in row i, one has
c1 < . . . < ck,

(iii) the only non-zero entry in each column ci is the pivot entry 1.

For example, the following matrix is in row-reduced echelon form




∗ ∗ 1 0 0 0 0 0 0
∗ ∗ 0 ∗ ∗ 1 0 0 0
∗ ∗ 0 ∗ ∗ 0 ∗ 1 0





where the ∗’s are some arbitrary elements of the field, and its pivot columns are
{c1, c2, c3} = {3, 6, 8}.

(b) Define a map Ln(q)
π
→ Bn by sending a subspace V to its set {c1, . . . , ck} of

pivot columns. Show that π is order-preserving, rank-preserving and surjective.

(c) The usual R-labelling of Bn induces via this map π a labelling of Hasse diagram
edges in Ln(q) as follows: if V ⋖ V ′ is a covering relation, label this edge by the
unique i ∈ [n] such that π(V ′)− π(V ) = {i}. Show that this is an R-labelling, and
use it to calculate µ(V, V ′) for any pair of subspaces V ≤ V ′.
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(d) Do Problem #45 in Chapter 3 of Stanley’s E.C. Vol I. Compare with your
answer to part (c).

(e) How many maximal chains are there in Bn? How many in Ln(q)? Given a
sequence of integers (k1, . . . , kr) with

∑r

i=1 ki = n, how many chains in Bn pass
through the ranks

0, k1, k1 + k2, k1 + k2 + k3, . . . , k1 + k2 + · · ·+ kr = n

and no other ranks? How many in Ln(q) pass through the same set of ranks?

9. The order dimension odimP of a poset P is the minimum value d such that P
can be embedded into a Cartesian product of d chains. That is, it is the smallest d

for which their is an encoding map P
φ
→ Rd with the property that p ≤P p′ if and

only if for each i = 1, 2, . . . , d one has φ(p)i ≤ φ(p′)i.

(a) Show that the Boolean algebra Bn has odimBn = n.
(Hint: Show that odimBn ≥ n by showing that the induced subposet Pn on the
union of atoms and coatoms in Bn has odimPn ≥ n.)

(b) Let L be a finite distributive lattice, and P its subposet of join-irreducibles.
Show that odimL is the size of the largest antichain in P .
(Hint for (b): Dilworth originally proved his theorem as a lemma aimed toward
proving this result!)

10. Let P be a finite poset, and A(P ) the collection of all antichains in P , partially
ordered by saying A ≤ A′ if for every a ∈ A there exists some a′ ∈ A′ with a ≤ a′.

(a) Explain why this poset A(P ) is isomorphic to the distributive lattice J(P ), and
prove that the antichains of maximum size form a sublattice of A(P ).

(b) Let Aut(P ) denote the group of poset automorphisms of P . Prove that there
exists a maximum sized antichain in P which is a union of orbits of Aut(P ).

(c) Use part (b) to show that if P is ranked and has the property that Aut(P ) acts
transitively on each rank (that is, given two elements p, p′ ∈ P of the same rank,
there is a poset automorphism φ : P → P with φ(p) = p′), then P is Sperner.

11. Prove that if P1, P2 are two ranked posets, each with a symmetric chain de-
composition, then their Cartesian product P1 × P2 also has a symmetric chain
decomposition.


