Math 8669 Introductory Grad Combinatorics
 Spring 2010, Vic Reiner

Homework 1- Due Friday February 26, 2010

Hand in at least 6 of the 11 problems.

1. (cf. Stanley, E.C. Vol. I, Chapter 3 Problem 30) A closure relation on a poset P is a map

$$
\begin{array}{cc}
P \rightarrow & P \\
x \mapsto & \bar{x}
\end{array}
$$

satisfying these three properties:

$$
\begin{aligned}
& x \leq \bar{x} \\
& \overline{\bar{x}}=\bar{x} \\
& x \leq y \quad \Rightarrow \quad \bar{x} \leq \bar{y} .
\end{aligned}
$$

Let \bar{P} denote the subposet consisting of the closed elements, that is, \bar{P} is the image of P or the set of elements with $x=\bar{x}$.
(a) Show that for any $x, y \in \bar{P}$ one has

$$
\mu_{\bar{P}}(x, y)=\sum_{y^{\prime} \in P: x \leq \bar{y}^{\prime}=y} \mu_{P}\left(x, y^{\prime}\right)
$$

(b) Deduce that if P is a poset with bottom, top elements $\hat{0}, \hat{1}$ and a closure relation $x \mapsto \bar{x}$ that restricts to $P-\{\hat{0}, \hat{1}\}$ (i.e. $\hat{0}, \hat{1}$ are the only elements whose closures are $\hat{0}, \hat{1}$ respectively), then

$$
\mu_{P}(\hat{0}, \hat{1})=\mu_{\bar{P}}(\hat{0}, \hat{1})
$$

2. (a) Let $x<y<z$ in a poset P have the property that every element y^{\prime} in the open interval (x, z) is comparable to y. Show that $\mu(x, z)=0$.
(b) Let $x<y<z$ in a finite lattice have the property that every element y^{\prime} in the open interval (x, z) has $y^{\prime} \vee y<z$. Show that $\mu(x, z)=0$.
(Hint for (b): Define a closure relation on the open interval by $\overline{y^{\prime}}:=y^{\prime} \vee y$. Then try to apply Problem 1(b) followed by part (a) of this problem.)
3. In a finite lattice L, show that $\mu(x, y)=0$ whenever x is not the meet of all the co-atoms in in the interval $[x, y]$. What about if y is not the join of all the atoms in $[x, y]$?
(Hint: consider the closure relation on $[x, y]$ which maps

$$
\left.z \mapsto \bigwedge_{\text {coatoms }} \bigwedge_{c \in[x, y]: c \geq z} c .\right)
$$

4. Show that for a lattice, one of the distributive laws

$$
x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)
$$

implies its dual distributive law

$$
x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)
$$

(Hint: first show that the inequality

$$
x \vee(y \wedge z) \leq(x \vee y) \wedge(x \vee z)
$$

is valid in any lattice.)
5. In a finite lattice, the atoms are the elements which cover the bottom element $\hat{0}$, and the coatoms are the elements which are covered by the top element $\hat{1}$. Say that L is atomic if every element is the join of atoms below it, and that it is coatomic if every element is the meet of the set of coatoms above it. Say that an element x^{\perp} is a complement to the element x if $x \vee x^{\perp}=\hat{1}$ and $x \wedge x^{\perp}=\hat{0}$.

For a finite distributive lattice L, show that the following are equivalent:
(i) L is atomic.
(ii) L is coatomic.
(iii) L is complemented (that is, every element has a complement).
(iv) $L=\mathcal{B}_{n}$ is a Boolean algebra.
6. Extend Birkhoff's Theorem (The fundamental theorem of finite distributive lattices) and its inverse associations

$$
\begin{array}{ccc}
\{\text { finite posets \}} & \leftrightarrow & \text { \{ finite distributive lattices \} } \\
P & \rightarrow & J(P) \\
\operatorname{Irr}(L) & \leftarrow & L .
\end{array}
$$

to a result about maps as follows.
A set-map $P_{1} \xrightarrow{f} P_{2}$ between two posets is order preserving if $x \leq y$ implies $f(x) \leq f(y)$. A set-map $L_{2} \xrightarrow{\phi} L_{1}$ is a lattice-morphism if

$$
\begin{aligned}
& \phi(x \vee y)=\phi(x) \vee \phi(y) \text { and } \\
& \phi(x \wedge y)=\phi(x) \wedge \phi(y)
\end{aligned}
$$

Say that ϕ is pointed if ϕ sends $\hat{0}_{L_{2}}, \hat{1}_{L_{2}}$ to $\hat{0}_{L_{1}}, \hat{1}_{L_{1}}$ respectively.
(a) Show that an order-preserving map $P_{1} \xrightarrow{f} P_{2}$ induces a pointed lattice-morphism $J\left(P_{2}\right) \xrightarrow{J(f)} J\left(P_{1}\right)$ defined by $\left.I \stackrel{J(f)}{\mapsto} f^{-1}(I)\right)$.
(b) Show that a pointed lattice-morphism $L_{2} \xrightarrow{\phi} L_{1}$ between two distributive lattices induces an order-preserving map $\operatorname{Irr}\left(L_{1}\right) \xrightarrow{\operatorname{Irr}(\phi)} \operatorname{Irr}\left(L_{2}\right)$ defined by $x \stackrel{\operatorname{Irr}(\phi)}{\longrightarrow}$ $\bigwedge_{y \in L_{2}: \phi(y) \geq x} y$.
(c) Show that

$$
\begin{aligned}
J(f \circ g) & =J(g) \circ J(f) \\
J(\mathrm{id}) & =\mathrm{id} \\
\operatorname{Irr}(\phi \circ \psi) & =\operatorname{Irr}(\psi) \circ \operatorname{Irr}(\phi) \\
\operatorname{Irr}(\mathrm{id}) & =\mathrm{id}
\end{aligned}
$$

(d) Show that

$$
\begin{gathered}
J(\operatorname{Irr}(\phi))=\phi \\
\operatorname{Irr}(J(f))=f
\end{gathered}
$$

In other words, J and Irr are contravariant functors, and mutually inverse. This whole set-up is sometimes called Birkhoff-Priestley duality.
7. In a lattice, an element x is called

$$
\begin{aligned}
& \text { prime if } \quad x \leq y \vee z \quad \Rightarrow \quad x \leq y \text { or } x \leq z \\
& \text { (join-)irreducible if } \quad x=y \vee z \quad \Rightarrow \quad x=y \text { or } x=z \text {. }
\end{aligned}
$$

(a) Prove that in any lattice, prime implies irreducible, but not conversely.
(b) Prove that the following conditions are equivalent for a finite lattice L (or if you like, assume only that L satisfies the descending chain condition, i.e. every descending chain $x_{1}>x_{2}>\cdots$ must terminate after finitely many steps):
(i) x is prime if and only x is irreducible,
(ii) every x in L has a decomposition $x=\bigvee_{i=1}^{r} x_{i}$ into irreducibles x_{i}, and if the decomposition is irredundant (that is, no two x_{i} are comparable) then the set $\left\{x_{i}\right\}_{i=1}^{r}$ uniquely determined by x,
(iii) L is distributive.
8. This problem explores further some of the ways in which the Boolean algebra \mathcal{B}_{n} should be viewed as the limiting case of vector space lattices $L_{n}(q)$ when the order q of the field goes to 1 .
(a) Given a k-dimensional \mathbb{F}_{q}-subspace V of \mathbb{F}_{q}^{n}, show that there is a unique $k \times n$ matrix A_{V} with entries in \mathbb{F}_{q} whose row-space is V and which is in row-reduced echelon form:
(i) each row ends with a (possibly empty) sequence of zeroes and then has its last non-zero entry (called a pivot) equal to 1 ,
(ii) letting c_{i} denote the column index of the pivot entry in row i, one has $c_{1}<\ldots<c_{k}$
(iii) the only non-zero entry in each column c_{i} is the pivot entry 1.

For example, the following matrix is in row-reduced echelon form

$$
\left[\begin{array}{lllllllll}
* & * & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
* & * & 0 & * & * & 1 & 0 & 0 & 0 \\
* & * & 0 & * & * & 0 & * & 1 & 0
\end{array}\right]
$$

where the $*$'s are some arbitrary elements of the field, and its pivot columns are $\left\{c_{1}, c_{2}, c_{3}\right\}=\{3,6,8\}$.
(b) Define a map $L_{n}(q) \xrightarrow{\pi} \mathcal{B}_{n}$ by sending a subspace V to its set $\left\{c_{1}, \ldots, c_{k}\right\}$ of pivot columns. Show that π is order-preserving, rank-preserving and surjective.
(c) The usual R-labelling of \mathcal{B}_{n} induces via this map π a labelling of Hasse diagram edges in $L_{n}(q)$ as follows: if $V \lessdot V^{\prime}$ is a covering relation, label this edge by the unique $i \in[n]$ such that $\pi\left(V^{\prime}\right)-\pi(V)=\{i\}$. Show that this is an R-labelling, and use it to calculate $\mu\left(V, V^{\prime}\right)$ for any pair of subspaces $V \leq V^{\prime}$.
(d) Do Problem \#45 in Chapter 3 of Stanley's E.C. Vol I. Compare with your answer to part (c).
(e) How many maximal chains are there in \mathcal{B}_{n} ? How many in $L_{n}(q)$? Given a sequence of integers $\left(k_{1}, \ldots, k_{r}\right)$ with $\sum_{i=1}^{r} k_{i}=n$, how many chains in \mathcal{B}_{n} pass through the ranks

$$
0, k_{1}, k_{1}+k_{2}, k_{1}+k_{2}+k_{3}, \ldots, k_{1}+k_{2}+\cdots+k_{r}=n
$$

and no other ranks? How many in $L_{n}(q)$ pass through the same set of ranks?
9. The order dimension odim P of a poset P is the minimum value d such that P can be embedded into a Cartesian product of d chains. That is, it is the smallest d for which their is an encoding map $P \xrightarrow{\phi} \mathbb{R}^{d}$ with the property that $p \leq_{P} p^{\prime}$ if and only if for each $i=1,2, \ldots, d$ one has $\phi(p)_{i} \leq \phi\left(p^{\prime}\right)_{i}$.
(a) Show that the Boolean algebra \mathcal{B}_{n} has odim $\mathcal{B}_{n}=n$.
(Hint: Show that $\operatorname{odim} \mathcal{B}_{n} \geq n$ by showing that the induced subposet P_{n} on the union of atoms and coatoms in \mathcal{B}_{n} has odim $P_{n} \geq n$.)
(b) Let L be a finite distributive lattice, and P its subposet of join-irreducibles. Show that odim L is the size of the largest antichain in P.
(Hint for (b): Dilworth originally proved his theorem as a lemma aimed toward proving this result!)
10. Let P be a finite poset, and $A(P)$ the collection of all antichains in P, partially ordered by saying $A \leq A^{\prime}$ if for every $a \in A$ there exists some $a^{\prime} \in A^{\prime}$ with $a \leq a^{\prime}$.
(a) Explain why this poset $A(P)$ is isomorphic to the distributive lattice $J(P)$, and prove that the antichains of maximum size form a sublattice of $A(P)$.
(b) Let $\operatorname{Aut}(P)$ denote the group of poset automorphisms of P. Prove that there exists a maximum sized antichain in P which is a union of orbits of $\operatorname{Aut}(P)$.
(c) Use part (b) to show that if P is ranked and has the property that $\operatorname{Aut}(P)$ acts transitively on each rank (that is, given two elements $p, p^{\prime} \in P$ of the same rank, there is a poset automorphism $\phi: P \rightarrow P$ with $\phi(p)=p^{\prime}$), then P is Sperner.
11. Prove that if P_{1}, P_{2} are two ranked posets, each with a symmetric chain decomposition, then their Cartesian product $P_{1} \times P_{2}$ also has a symmetric chain decomposition.

