Math 8669 Introductory Grad Combinatorics Spring 2010, Vic Reiner Homework 2- Due April 9, 2010

Hand in at least 6 of the 11 problems.

- 1. Recall from lecture that a (combinatorial) projective geometry $(\mathcal{P}, \mathcal{L})$ was defined by 4 axioms PG1, PG2, PG3, PG4, and that its dimension was defined to be 1 less than the rank of its lattice of flats.
- (a) Show that a projective *plane*, that is a projective geometry of dimension 2, has the following equivalent axiomatization:
 - PP1. Every two distinct points lie on a unique line.
 - PP2. Every two distinct lines have a unique point in common.
 - PP3. Every line contains at least 3 points.
 - PP4. There exist 3 non-collinear points.
- (b) Show that in a finite projective plane, all lines have the same number of points, and call this number q + 1.
- (c) Show that each point lies on q+1 lines, and $|\mathcal{P}|=|\mathcal{L}|=q^2+q+1$.
- 2. Given G = (V, E) be a bipartite graph with bipartition $V = A \sqcup B$, let $\mathbb{F} \subseteq \mathbb{K}$ be a field extension in which there exist elements $\{c_{a,b}: \{a,b\} \in E\}$ of \mathbb{K} which are algebraically independent over \mathbb{F} , i.e. there are no polynomials in variables $x_{a,b}$ with coefficients in \mathbb{F} which vanish when one plugs in $x_{a,b} = c_{a,b}$. Define vectors $\{v_a : a \in A\}$ in \mathbb{K}^B by

$$v_a := \sum_{b \in B: \{a,b\} \in E} c_{a,b} \epsilon_b$$

where ϵ_b is a standard basis vector in \mathbb{K}^B .

Show that a subset $A' \subset A$ can be matched along edges in E to distinct elements of B if and only if the subset $\{v_a : a \in A'\}$ is \mathbb{K} -linearly independent. In other words, partial matchings of A into B form the independent sets of a matroid that is representable over \mathbb{K} . Such matroids are called transversal matroids.

(Hint: Consider the $|A'| \times |B|$ matrix having $\{v_a : a \in A'\}$ as its columns. Under what circumstances does the square submatrix with rows indexed by some subset $B' \subseteq B$ with |B'| = |A'| have non-zero determinant? What does it mean for there to exist such a B'?)

- 3. Show that the following axiom systems are equivalent to the axiomizations of finite matroids given in lecture (by an exchange closure and/or independent sets):
- (a) (Basis axioms) A family $\mathcal{B} \subseteq 2^E$ forms the set of *bases* of a matroid M on the finite set E if
 - B1. All sets B in \mathcal{B} have the same cardinality (called the rank of M).
 - B2. Given $B, B' \in \mathcal{B}$, and $e \in B$, there exists some $e' \in B'$ with $B \{e\} \cup \{e'\} \in \mathcal{B}$.

(Hint: The bases are supposed to model the maximal independent sets.)

- (b) (Circuit axioms) A family $\mathcal{C} \subseteq 2^E$ forms the set of *circuits* of a matroid M on the finite set E if
 - C1. The sets in C form an antichain under inclusion.
 - C2. Given $C, C' \in \mathcal{C}$, with $C \neq C'$ and $e \in C \cap C'$, there exists some $C'' \in \mathcal{C}$ with $C'' \subseteq C \cup C' \{e\}$.

(Hint: The circuits are supposed to model the minimal dependent sets.)

4. Given a graph G = (V, E) with loops and multiple edges allowed, show that for any field \mathbb{F} , the matroid associated with the vector configuration in \mathbb{F}^V defined by

$$\{v_e = \epsilon_i - \epsilon_j : e = \{i, j\} \in E(G)\}$$

satisfies the following.

- (a) the closure \bar{A} of a subset $A \subset E$ consists of all edges $e \in E$ for which there exists a path from the endpoints of e in G using only edges from A.
- (b) its independent sets are the subforests of G, that is, the subsets of edges containing no cycles.
- (c) its bases are the spanning subforests of G, that is, the subforests which consist of one spanning tree in each connected component of G (here spanning means connecting all vertices).
- (d) its *circuits* are the *simple cycles* of G, that is sequences of edges e_1, \ldots, e_k in E with the property that there are k distinct vertices v_1, \ldots, v_k for which $e_i = \{v_i, v_{i+1}\}$ (and the subscripts on v_j 's are taken modulo k).

- 5. Let M be a matroid on E, and choose a linear order e_1, e_2, \ldots, e_n for the elements of E. Given a circuit C of M, with minimum element c in this order, call $C \{c\}$ a broken circuit. Say that a subset $A \subseteq E$ is NBC if it contains no broken circuits $C \{c\}$.
- (a) Show that for any flat F in the geometric lattice of flats L(M), one has

$$\mu_{L(M)}(\varnothing, F) = (-1)^{r(F)} |\{NBC \text{ sets } A \subseteq E : \bar{A} = F\}|.$$

(Hint: Show the right-hand side satisfies the proper identity that defines $\mu_{L(M)}(\emptyset, F)$, via a sign-reversing involution).

- (b) The linear ordering on E gives an ordering on the join-irreducibles (=atoms) of the upper-semimodular lattice L(M), and hence induces an R-labelling of L(M) as explained in lecture. Show why the Möbius function calculation this R-labelling provides agrees with part (a), by exhibiting a bijection between NBC bases for M and maximal chains in L(M) whose label set is decreasing.
- 6. (a) Explain why the partition lattice Π_n is the lattice of flats for the matroid associated with the complete graph K_n on n vertices.
- (b) Indexing the atoms E of Π_n by pairs $\{i, j\}$ (i.e. edges of K_n), pick any linear ordering of E in which $\min\{i, j\} > \min\{i', j'\}$ implies that $\{i, j\}$ comes before $\{i', j'\}$. Show that for every triple i < j < k, the pair of edges $\{i, j\}, \{i, k\}$ forms a broken circuit. Show furthermore that every broken circuit contains at least one such pair.
- (c) Use part (b) and Problem 8(a) to prove that

$$\mu_{\Pi_n}(\hat{0}, \hat{1}) = (-1)^{n-1}(n-1)!.$$

7. Let M be a matroid on ground set E, and $c: E \to \mathbb{R}$ any assignment of costs $c(e) \in \mathbb{R}$ to each e in E. Show that the following "greedy" algorithm for finding a basis B of M with minimum total cost $\sum_{e \in B} c(e)$ always works, that is, it will always terminate with a basis B for M, and B achieves the minimum:

Start at stage 0 with $I_0 = \emptyset$, an independent set. At stage j, given the independent set I_{j-1} , choose an edge $e_j \in E$ with lowest cost among those such that $I_j := I_{j-1} \cup \{e_j\}$ remains independent. Repeat.

When M = M(G) is a graphic matroid, this is called *Kruskal's algo*rithm for finding a minimum cost spanning tree.

- 8. (a) Let G be a planar graph with a chosen planar embedding, and G^{\perp} its planar dual with respect to this embedding. Show that $M(G)^{\perp} = M(G^{\perp})$.
- (b) For any orientation ω of the edges E(G), let ω^{\perp} be the induced orientation of the dual edges $E(G^{\perp})$ defined by the *right-hand rule*: if you place the origin at the crossing of some pair of dual edges e, e^{\perp} in $E(G), E(G^{\perp})$ respectively, then the pair of tangent vectors to those edges pointing in the directions of the edges should form a right-handed coordinate system in the plane (like the usual positive x-axis, positive y-axis). Show that ω is acyclic if and only if ω^{\perp} is totally cyclic.
- 9. Prove the following Tutte polynomial evaluation for graphic matroids: if G is a graph with c(G) connected components, and p,q are positive integers, then

$$T_{M(G)}(1-p, 1-q) = (-p)^{-c(G)}(-1)^{|V(G)|} \sum_{(x,y)} (-1)^{|\operatorname{supp}(y)|}$$

where (x, y) runs over all pairs in which

- x is a vertex p-coloring,
- y is a $\mathbb{Z}/q\mathbb{Z}$ -valued flow, and
- for every edge $e \in E(G)$, one has $y_e \neq 0$ if and only if x colors e improperly, i.e. $x_v = x_{v'}$ where $e = \{v, v'\}$.

Here |supp(y)| is the number of edges e with $y_e \neq 0$ or equivalently, the number of edges that are improperly colored by x.

10. (Character theory warm-up) Given two finite groups G, G' and complex representations

$$\rho: G \to GL(V)$$
$$\rho': G' \to GL(V')$$

define a new representation

$$\rho \otimes \rho' : G \times G' \to GL(V \otimes V')$$

by

$$(\rho \otimes \rho')(g, g')(v \otimes v') = \rho(g)v \otimes \rho'(g')v'.$$

- (a) Show $\chi_{\rho \otimes \rho'}(g, g') = \chi_{\rho}(g) \cdot \chi_{\rho'}(g')$.
- (b) Show that $\rho \otimes \rho'$ is irreducible for $G \times G'$ if and only if both ρ, ρ' are irreducibles for G, G'.
- (c) If $\{\rho_i\}_{i\in I}$, $\{\rho'_{i'}\}_{i'\in I'}$ are complete sets of representatives of the (equvivalence classes of) irreducible representations of G, G', respectively,

show that $\{\rho_i \otimes \rho_{i'}\}_{(i,i') \in I \times I'}$ gives a complete set of representatives for the irreducibles of $G \times G'$.

- 11. If G is a finite group acting on [n], say that the action is
 - transitive if there is only one G-orbit on [n],
 - doubly transitive if it is transitive on ordered pairs, that is, for every pair $i \neq j$ and $i' \neq j'$ in [n] there exists $g \in G$ with g(i) = i', g(j) = j'.

Let χ be the permutation representation/character associated with the G-action.

- (a) Show that the action is transitive if and only if $\langle \chi, \chi_{trivial} \rangle = 1$.
- (b) Show that the action is doubly transitive if and only if $\chi \chi_{trivial}$ is irreducible.