
Math 8669 Introductory Grad Combinatorics

Spring 2010, Vic Reiner

Homework 2- Due April 9, 2010

Hand in at least 6 of the 11 problems.

1. Recall from lecture that a (combinatorial) projective geometry
(P,L) was defined by 4 axioms PG1, PG2, PG3, PG4, and that its
dimension was defined to be 1 less than the rank of its lattice of flats.

(a) Show that a projective plane, that is a projective geometry of di-
mension 2, has the following equivalent axiomatization:

PP1. Every two distinct points lie on a unique line.
PP2. Every two distinct lines have a unique point in common.
PP3. Every line contains at least 3 points.
PP4. There exist 3 non-collinear points.

(b) Show that in a finite projective plane, all lines have the same num-
ber of points, and call this number q + 1.

(c) Show that each point lies on q +1 lines, and |P| = |L| = q2 + q +1.

2. Given G = (V, E) be a bipartite graph with bipartition V = A⊔B,
let F ⊆ K be a field extension in which there exist elements {ca,b :
{a, b} ∈ E} of K which are algebraically independent over F, i.e. there
are no polynomials in variables xa,b with coefficients in F which vanish
when one plugs in xa,b = ca,b. Define vectors {va : a ∈ A} in K

B by

va :=
∑

b∈B:{a,b}∈E

ca,bǫb

where ǫb is a standard basis vector in K
B.

Show that a subset A′ ⊂ A can be matched along edges in E to
distinct elements of B if and only if the subset {va : a ∈ A′} is K-
linearly independent. In other words, partial matchings of A into B
form the independent sets of a matroid that is representable over K.
Such matroids are called transversal matroids.
(Hint: Consider the |A′| × |B| matrix having {va : a ∈ A′} as its
columns. Under what circumstances does the square submatrix with
rows indexed by some subset B′ ⊆ B with |B′| = |A′| have non-zero
determinant? What does it mean for there to exist such a B′?)
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3. Show that the following axiom systems are equivalent to the ax-
iomizations of finite matroids given in lecture (by an exchange closure
and/or independent sets):

(a) (Basis axioms) A family B ⊆ 2E forms the set of bases of a matroid
M on the finite set E if

B1. All sets B in B have the same cardinality (called the rank of
M).

B2. Given B, B′ ∈ B, and e ∈ B, there exists some e′ ∈ B′ with
B − {e} ∪ {e′} ∈ B.

(Hint: The bases are supposed to model the maximal independent
sets.)

(b) (Circuit axioms) A family C ⊆ 2E forms the set of circuits of a
matroid M on the finite set E if

C1. The sets in C form an antichain under inclusion.
C2. Given C, C ′ ∈ C, with C 6= C ′ and e ∈ C∩C ′, there exists some

C ′′ ∈ C with C ′′ ⊆ C ∪ C ′ − {e}.

(Hint: The circuits are supposed to model the minimal dependent sets.)

4. Given a graph G = (V, E) with loops and multiple edges allowed,
show that for any field F, the matroid associated with the vector con-
figuration in F

V defined by

{ve = ǫi − ǫj : e = {i, j} ∈ E(G)}

satisfies the following.

(a) the closure Ā of a subset A ⊂ E consists of all edges e ∈ E for
which there exists a path from the endpoints of e in G using only edges
from A.

(b) its independent sets are the subforests of G, that is, the subsets of
edges containing no cycles.

(c) its bases are the spanning subforests of G, that is, the subforests
which consist of one spanning tree in each connected component of G
(here spanning means connecting all vertices).

(d) its circuits are the simple cycles of G, that is sequences of edges
e1, . . . , ek in E with the property that there are k distinct vertices
v1, . . . , vk for which ei = {vi, vi+1} (and the subscripts on vj’s are taken
modulo k).
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5. Let M be a matroid on E, and choose a linear order e1, e2, . . . , en

for the elements of E. Given a circuit C of M , with minimum element
c in this order, call C − {c} a broken circuit. Say that a subset A ⊆ E
is NBC if it contains no broken circuits C − {c}.

(a) Show that for any flat F in the geometric lattice of flats L(M), one
has

µL(M)(∅, F ) = (−1)r(F )|{NBC sets A ⊆ E : Ā = F}|.

(Hint: Show the right-hand side satisfies the proper identity that de-
fines µL(M)(∅, F ), via a sign-reversing involution).

(b) The linear ordering on E gives an ordering on the join-irreducibles
(=atoms) of the upper-semimodular lattice L(M), and hence induces
an R-labelling of L(M) as explained in lecture. Show why the Möbius
function calculation this R-labelling provides agrees with part (a), by
exhibiting a bijection between NBC bases for M and maximal chains
in L(M) whose label set is decreasing.

6. (a) Explain why the partition lattice Πn is the lattice of flats for the
matroid associated with the complete graph Kn on n vertices.

(b) Indexing the atoms E of Πn by pairs {i, j} (i.e. edges of Kn), pick
any linear ordering of E in which min{i, j} > min{i′, j′} implies that
{i, j} comes before {i′, j′}. Show that for every triple i < j < k, the
pair of edges {i, j}, {i, k} forms a broken circuit. Show furthermore
that every broken circuit contains at least one such pair.

(c) Use part (b) and Problem 8(a) to prove that

µΠn
(0̂, 1̂) = (−1)n−1(n − 1)!.

7. Let M be a matroid on ground set E, and c : E → R any as-
signment of costs c(e) ∈ R to each e in E. Show that the following
“greedy”algorithm for finding a basis B of M with minimum total cost∑

e∈B c(e) always works, that is, it will always terminate with a basis
B for M , and B achieves the minimum:

Start at stage 0 with I0 = ∅, an independent set. At
stage j, given the independent set Ij−1, choose an edge
ej ∈ E with lowest cost among those such that Ij :=
Ij−1 ∪ {ej} remains independent. Repeat.

When M = M(G) is a graphic matroid, this is called Kruskal’s algo-

rithm for finding a minimum cost spanning tree.
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8. (a) Let G be a planar graph with a chosen planar embedding,
and G⊥ its planar dual with respect to this embedding. Show that
M(G)⊥ = M(G⊥).

(b) For any orientation ω of the edges E(G), let ω⊥ be the induced
orientation of the dual edges E(G⊥) defined by the right-hand rule: if
you place the origin at the crossing of some pair of dual edges e, e⊥

in E(G), E(G⊥) respectively, then the pair of tangent vectors to those
edges pointing in the directions of the edges should form a right-handed
coordinate system in the plane (like the usual positive x-axis, positive
y-axis). Show that ω is acyclic if and only if ω⊥ is totally cyclic.

9. Prove the following Tutte polynomial evaluation for graphic ma-
troids: if G is a graph with c(G) connected components, and p, q are
positive integers, then

TM(G)(1 − p, 1 − q) = (−p)−c(G)(−1)|V (G)|
∑

(x,y)

(−1)|supp(y)|

where (x, y) runs over all pairs in which

• x is a vertex p-coloring,
• y is a Z/qZ-valued flow, and
• for every edge e ∈ E(G), one has ye 6= 0 if and only if x colors

e improperly, i.e. xv = xv′ where e = {v, v′}.

Here |supp(y)| is the number of edges e with ye 6= 0 or equivalently,
the number of edges that are improperly colored by x.

10. (Character theory warm-up) Given two finite groups G, G′ and
complex representations

ρ : G → GL(V )

ρ′ : G′ → GL(V ′)

define a new representation

ρ ⊗ ρ′ : G × G′ → GL(V ⊗ V ′)

by
(ρ ⊗ ρ′)(g, g′)(v ⊗ v′) = ρ(g)v ⊗ ρ′(g′)v′.

(a) Show χρ⊗ρ′(g, g′) = χρ(g) · χρ′(g
′).

(b) Show that ρ ⊗ ρ′ is irreducible for G × G′ if and only if both ρ, ρ′

are irreducibles for G, G′.

(c) If {ρi}i∈I , {ρ
′
i′}i′∈I′ are complete sets of representatives of the (equ-

vivalence classes of) irreducible representations of G, G′, respectively,
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show that {ρi ⊗ ρi′}(i,i′)∈I×I′ gives a complete set of representatives for
the irreducibles of G × G′.

11. If G is a finite group acting on [n], say that the action is

• transitive if there is only one G-orbit on [n],
• doubly transitive if it is transitive on ordered pairs, that is, for

every pair i 6= j and i′ 6= j′ in [n] there exists g ∈ G with
g(i) = i′, g(j) = j′.

Let χ be the permutation representation/character associated with the
G-action.

(a) Show that the action is transitive if and only if 〈χ, χtrivial〉 = 1.
(b) Show that the action is doubly transitive if and only if χ − χtrivial

is irreducible.


