Math 8669 Introductory Grad Combinatorics, 2nd semester Vic Reiner
 Group representations homework

1. Given two finite groups G, G^{\prime} and complex representations

$$
\begin{aligned}
\rho: G & \rightarrow G L(V) \\
\rho^{\prime}: G^{\prime} & \rightarrow G L\left(V^{\prime}\right)
\end{aligned}
$$

define a new representation

$$
\rho \otimes \rho^{\prime}: G \times G^{\prime} \rightarrow G L\left(V \otimes V^{\prime}\right)
$$

by

$$
\left(\rho \otimes \rho^{\prime}\right)\left(g, g^{\prime}\right)\left(v \otimes v^{\prime}\right)=\rho(g) v \otimes \rho^{\prime}\left(g^{\prime}\right) v^{\prime} .
$$

(a) Show $\chi_{\rho \otimes \rho^{\prime}}\left(g, g^{\prime}\right)=\chi_{\rho}(g) \cdot \chi_{\rho^{\prime}}\left(g^{\prime}\right)$.
(b) Show that $\rho \otimes \rho^{\prime}$ is irreducible for $G \times G^{\prime}$ if and only if both ρ, ρ^{\prime} are irreducibles for G, G^{\prime}.
(c) If $\left\{\rho_{i}\right\}_{i \in I},\left\{\rho_{i^{\prime}}^{\prime}\right\}_{i^{\prime} \in I^{\prime}}$ are complete sets of representatives of the (equvivalence classes of) irreducible representations of G, G^{\prime}, respectively, show that $\left\{\rho_{i} \otimes \rho_{i^{\prime}}\right\}_{\left(i, i^{\prime}\right) \in I \times I^{\prime}}$ gives a complete set of representatives for the irreducibles of $G \times G^{\prime}$.
2. If G is a finite group acting on $[n]$, say that the action is

- transitive if there is only one G-orbit on $[n]$,
- doubly transitive if it is transitive on ordered pairs, that is, for every pair $i \neq j$ and $i^{\prime} \neq j^{\prime}$ in $[n]$ there exists $g \in G$ with $g(i)=i^{\prime}, g(j)=j^{\prime}$.
Let χ be the permutation representation/character associated with the G-action.
(a) Show that the action is transitive if and only if $\left\langle\chi, \chi_{\text {trivial }}\right\rangle=1$.
(b) Show that a transitive action is doubly transitive if and only if $\chi-\chi_{\text {trivial }}$ is irreducible.

3. Construct all the irreducible representations/characters for the symmetric group \mathfrak{S}_{4} according to the following plan (and using a labelling convention, to be explained later, by partitions λ of the number 4).

There are two obvious (irreducible) 1-dimensional representations, namely

- the trivial represention, which we will denote $\chi_{(4)}$, and
- the sign representation $\chi_{(1,1,1,1)}$.
(a) Show that the defining permutation representation $\chi_{\text {def }}$ of \mathfrak{S}_{4}, in which it permutes the coordinates in \mathbb{C}^{4}, decomposes

$$
\chi_{\text {def }}=\chi_{(4)} \oplus \chi_{(3,1)}
$$

where $\chi_{(3,1)}$ is an irreducible representation of degree 3 . (b) Show that the permutation representation $\chi_{\text {pairs }}$ of \mathfrak{S}_{4}, in which it permutes all unordered pairs $\{i, j\} \in\binom{[4]}{2}$, decomposes

$$
\chi_{\text {pairs }}=\chi_{(4)} \oplus \chi_{(3,1)} \oplus \chi_{(2,2)}
$$

where $\chi_{(2,2)}$ is an irreducible representation of degree 2 .
(d) Define $\chi_{(2,1,1)}:=\chi_{(1,1,1,1)} \otimes \chi_{(3,1)}$. Check that $\chi_{(2,1,1)}$ is irreducible, and that χ_{λ} for $\lambda=(4),(3,1),(2,2),(2,1,1),(1,1,1,1)$ give the complete list of irreducible representations of \mathfrak{S}_{4}.
(e) Write down the conjugacy classes and character table for \mathfrak{S}_{4}.
4. Let $D_{2 n}$ be the dihedral group of order $2 n$, with presentation

$$
D_{2 n}=\left\langle s, r: s^{2}=r^{n}=1, s r s=r^{-1}\right\rangle
$$

and defining representation as the symmetries of a regular convex n gon, in which s is any fixed reflection symmetry, and r is rotation through $\frac{2 \pi}{n}$ counterclockwise.

Consider the cyclic (normal) subgroup $C_{n}=\langle r\rangle$ inside $D_{2 n}$, and its irreducible (degree 1) representations χ_{k} for $k \in \mathbb{Z} / n \mathbb{Z}$:

$$
\begin{aligned}
& C_{n} \xrightarrow{\chi_{h}} \mathbb{C}^{\times} \\
& r \mapsto \omega^{k}
\end{aligned}
$$

where $\omega=e^{\frac{2 \pi i}{n}}$
(a) Compute explicitly the characters $\operatorname{Ind}_{C_{n}}^{D_{2 n}} \chi_{k}$ as functions $D_{2 n} \rightarrow \mathbb{C}$. Under what conditions on $k, k^{\prime} \in \mathbb{Z} / n \mathbb{Z}$ are they the same? For which values of k is it equivalent to the defining representation?
(b) Find all the degree 1 characters of $D_{2 n}$.
(Hint: the answer depends upon $n \bmod 2$ and was discussed somewhat in lecture, but please give a complete discussion with proof).
(c) Find all the irreducible characters of $D_{2 n}$, all its conjugacy classes, and write down its character table.
5. Let G be a finite group, and $H \subset G$ a subgroup of index 2 .
(a) Recall (and explain) why H is a normal subgroup, and hence a union of conjugacy classes from G.
(b) Show that a conjugacy class in G which intersects H will either form a single conjugacy class in H, or split into two conjugacy classes
in H. Furthermore, show that a conjugacy class C in G does not split in H if and only if there exists some $c \in C$ which commutes with some $g \notin H$.
(c) Let χ be an irreducible character/representation for G. Show that $\operatorname{Res}_{H}^{G} \chi$ is either irreducible for H, or is the sum of two inequivalent irreducibles for H. Furthermore, show that $\operatorname{Res}_{H}^{G} \chi$ is irreducible for H if and only if $\chi(g) \neq 0$ for some $g \notin H$.
6. Use problems 4 and 6 to find the conjugacy classes and irreducible characters for the alternating subgroup $A_{4} \subset \mathfrak{S}_{4}$, and write down its character table.
7. Write down explicitly the entire character table for the symmetric group \mathfrak{S}_{5} using the Murnaghan-Nakayama rule.
8. Show that the irreducible character χ^{λ} of the symmetric group \mathfrak{S}_{n} has $\chi^{\lambda}(w)=0$ whenever the side-length of λ 's Durfee square (the largest square contained inside the Ferrers diagram of λ) is larger than the number of cycles of w.
9. Prove that the character table for \mathfrak{S}_{n} has determinant

$$
\pm \prod_{\lambda \vdash n} \prod_{i=1}^{\ell(\lambda)} \lambda_{i}
$$

(Hint: Depending upon your approach, Exercise 10 could be useful.)
The absolute value of this determinant gives the index of the sublattice of virtual characters $\chi_{\rho}-\chi_{\rho^{\prime}}$ of \mathfrak{S}_{n} inside the lattice of all \mathbb{Z}-valued class functions $f: \mathfrak{S}_{n} \rightarrow \mathbb{Z}$.
10. Given a partition λ and $j \geq 1$, let $m_{j}(\lambda)$ denote the multiplicity of the part j in λ, so that $\lambda=\left(1^{m_{1}(\lambda)}, 2^{m_{2}(\lambda)}, 3^{m_{3}(\lambda)}, \cdots\right)$.
(a) Prove these two generating function identities $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$:

For each fixed positive integeer $j=1,2,3, \ldots$, one has

$$
\sum_{\lambda} q^{|\lambda|} \cdot m_{j}(\lambda) \quad \stackrel{(*)}{=} \frac{q^{j}}{1-q^{j}} \prod_{i=1}^{\infty} \frac{1}{1-q^{i}} \stackrel{(* *)}{=} \sum_{\lambda} q^{|\lambda|} \cdot \#\left\{k: m_{k} \geq j\right\} .
$$

(b) From (a), deduce that with j fixed as before, for all $n \geq 0$ one has

$$
\sum_{\lambda \vdash n} m_{j}(\lambda)=\sum_{\lambda \vdash n} \#\left\{k: m_{k} \geq j\right\} .
$$

(c) From (b), deduce that for all $n \geq 0$ one has

$$
\prod_{\lambda \vdash n} \prod_{i=1}^{\ell(\lambda)} \lambda_{i}=\prod_{\lambda \vdash n} \prod_{j=1}^{\infty} m_{j}(\lambda)!.
$$

(d) From (c), deduce that

$$
\prod_{\lambda i n} z_{\lambda}=\left(\prod_{\lambda i n n i=1}^{e(\lambda)} \lambda_{i}\right)^{2}
$$

where recall that

$$
z_{\lambda}:=1^{m_{1}(\lambda)} \cdot m_{1}(\lambda)!\cdot 2^{m_{2}(\lambda)} \cdot m_{2}(\lambda)!\cdot 3^{m_{2}(\lambda)} \cdot m_{3}(\lambda)!\cdots
$$

