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Introduction

One of the great pleasures in mathematics occurs when one considers several

different proofs of a single result. In fact, when one considers the myriad

proofs of the Pythagorean theorem and the irrationality of
√

2 constructed

over the centuries, it seems we humans can never be satisfied with just one

proof. Why do we continue to devise new approaches to known results?

There is something in the reasoning itself that brings insight to the problem

beyond what the result tells us, like looking at a sculpture from many different

perspectives to appreciate it as fully as possible.

In this article we present four proofs of the ballot theorem, describe some

of the history surrounding each of the proofs, and consider the different

perspectives that each brings to the problem.

The Ballot Problem: Suppose that in an election, candidate A receives

a votes and candidate B receives b votes, where a ≥ kb for some positive

integer k. Compute the number of ways the ballots can be ordered so that

A maintains more than k times as many votes as B throughout the counting

of the ballots.

1This paper has been accepted by Mathematics Magazine, April 2007.
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The Ballot Theorem: The solution to the ballot problem is
a− kb

a + b

(
a + b

a

)
.

Let us call a permutation of the ballots good if A stays ahead of B by more

than a factor of k throughout the counting of the ballots, and bad otherwise.

Since the total number of distinct permutations of the a + b ballots is

(
a + b

a

)
=

(a + b)!

a!b!
,

the theorem tells us that if all ballot permutations are equally likely, then

the probability of a good permutation occurring is (a− kb)/(a + b).

In 1887 Joseph Bertrand [8] introduced the ballot problem for the case

k = 1, gave its solution, outlined an inductive proof, and asked if a “di-

rect solution” could be found. Almost immediately after Bertrand posed

his question, Émile Barbier [5] stated and provided a solution to the ballot

problem for arbitrary k, but without any proof. Very shortly after Barbier,

Désiré André [4] produced a short combinatorial proof of the ballot theorem

for k = 1. In 1923 Aeppli [2] announced that he had the first proof of the

ballot theorem for k ≥ 1, and he directed interested readers to see his Ph.D.

thesis [3, pp. 11-15] for the proof. Takács [30] supplies a nice account of the

historical development of various ballot theorems, and gives several proofs of

the ballot theorem, including the original proofs by André and Aeppli.

Proof 1: Count the Bad Ballot Permutations

André’s approach for the case k = 1 is to count the number of bad ballot

permutations and subtract that from the number of all ballot permutations

to obtain the number of good ballot permutations. Briefly, André supposes
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that a ballots are marked “A” and b ballots are marked “B”. He first notes

that every ballot permutation starting with B is bad, and there are
(

a+b−1
a

)

of these. Through a reversible procedure, he demonstrates a one-to-one cor-

respondence between the bad ballot permutations starting with A, and all

permutations consisting of a A’s and b−1 B’s. Again, these number
(

a+b−1
a

)
.

He concludes that the number of bad ballot permutations is 2
(

a+b−1
a

)
, and

the ballot theorem then follows by simplifying
(

a+b
a

)− 2
(

a+b−1
a

)
= a−b

a+b

(
a+b
a

)
.

The ballot problem and its solution caught the imagination of mathe-

maticians, and many variations of André’s proof have appeared throughout

the years. For instance, Percy MacMahon [18] applied his deep theory of

partitions to the problem. The most famous and elegant of these variations

is the “reflection method” (often misattributed to André) in which ballot

permutations are represented as lattice paths and portions of the bad paths

are reflected across a line. This method was developed in the pair of papers

[1] and [19] in 1923. Interestingly, the reflection method fails to generalize in

a way that solves the ballot problem for k > 1. See [23] for more detail on

André’s original proof, the reflection method, and extending André’s original

proof to the case k ≥ 1.

In 2003 Goulden and Serrano [14] provided a clever proof of the ballot

theorem (for k ≥ 1) using André’s “count the bad ballot permutations”

approach [14], and we present a variation of that proof here. Their proof

rotates a portion of a lattice path instead of reflecting it.

Proof 1. We can think of a ballot permutation as a lattice path starting at

(0, 0) where votes for A are expressed as upsteps (1, 1) and votes for B are

expressed as downsteps (1,−k). We seek the number of such paths with a
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upsteps and b downsteps where no step ends on or below the x-axis. Paths

that remain above the x-axis (after the origin) are good, while those with

steps that end on or below the x-axis are bad. A downstep that starts above

the x-axis and ends on or below it is called a bad step.

Figure 1: Example with k = 3. XY ∈ B1 and X̃Y ∈ B3.

For 0 ≤ i ≤ k, let Bi denote the set of bad paths whose first bad step

ends i units below the x-axis. Clearly these k + 1 sets are disjoint and their

union is the set of all bad paths. Notice that the paths in Bk are exactly

those paths that start with a downstep, and so |Bk| =
(

a+b−1
a

)
. We now show

that for any i 6= k we actually have |Bi| = |Bk|.
Let P be a path in Bi (i 6= k), and identify the first step of P that ends i

units below the x-axis. Let X be the initial segment of P that ends with that

step and write P = XY . Let X̃ denote the path that results from rotating

X by 180◦, exchanging its endpoints; see Figure 1. Since X ends with a

downstep, X̃ starts with a downstep, and consequently X̃Y ∈ Bk.

The same process converts a path in Bk into a path in Bi (i 6= k). If
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P ∈ Bk, then identify the first step that ends i units below the x-axis. Let X

denote the initial segment of P that ends with that step and write P = XY .

Since X necessarily ends with an upstep, we have X̃Y ∈ Bi.

Thus each of the k + 1 sets Bi have cardinality
(

a+b−1
a

)
, and the number

of good paths is

(
a + b

a

)
− (k + 1)

(
a + b− 1

a

)
=

a− kb

a + b

(
a + b

a

)
.

Of particular interest in this proof is the fact that the sets Bi of bad ballot

permutations all have the same cardinality, regardless of i. We say that these

sets uniformly partition the set of bad paths. In Proof 4 we will see another

instance of a uniform partition.

As often happens in mathematics, it appears that the above 2003 proof

is essentially a rediscovery of the 1923 proof by Aeppli. Aeppli’s proof of

the ballot theorem appeared in his dissertation [3], and was not widely avail-

able until Takács [30] provided a “somewhat modified version” of the proof

in 1997. In his proof, Aeppli uses no geometric reasoning, and instead of

counting the number of good ballot permutations he computes the proba-

bility that a ballot permutation is good (provided, of course, that all ballot

permutations are equally likely). He partitions the bad ballot permutations

in exactly the same manner as the preceding proof does; moreover, to show

a one-to-one correspondence he reverses an initial portion of a ballot permu-

tation, which is geometrically equivalent to rotating an initial portion of a

lattice path.
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Proof 2: Induction

In 1887 Barbier stated the ballot theorem for k ≥ 1 without proof. If he had

a proof, one supposes it followed the inductive proof that Bertrand sketched

for the case k = 1. An inductive proof is not difficult to construct, and no

record seems to exist for the “first” such proof of the ballot theorem. The

proof below is similar to that found in Takács [30].

Proof 2. Let Nk(a, b) denote the number of ways the a + b ballots (a ≥
kb) can be ordered so that candidate A maintains more than k times as

many votes as B throughout the counting of the ballots. The conditions

Nk(a, 0) = 1 for all a > 0 and Nk(kb, b) = 0 for all b > 0, are easily verified

by considering the statement of the ballot problem, and they both satisfy

Nk(a, b) = a−kb
a+b

(
a+b
a

)
.

For b > 0 and a > kb, we see that Nk(a, b) = Nk(a, b−1)+Nk(a−1, b) by

considering the last vote in a ballot permutation. By induction, this quantity

is a−k(b−1)
a+b−1

(
a+b−1

a

)
+ a−1−kb

a+b−1

(
a+b−1
a−1

)
which simplifies to a−kb

a+b

(
a+b
a

)
as needed.

Proof 3: The Cycle Lemma

In the ballot theorem we are given an expression where the total number

of ballot permutations
(

a+b
a

)
is multiplied by the fraction (a − kb)/(a + b).

Dvoretzky and Motzkin [12] solve the ballot problem by introducing the cycle

lemma which makes evident the reason for the fraction. The cycle lemma

provides a surprising result: for any ballot sequence of a votes for A and b

votes for B, exactly a−kb of the a+b cyclic permutations of the sequence are

good. Consequently, a fraction of (a− kb)/(a + b) of all ballot permutations
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are good.

Dershowitz and Zaks [11] give two elegant proofs of the cycle lemma.

Their first proof is a generalization (and simplification) of the proofs in [7],

[25], and [26]; their second proof follows [15], [22], and [32]. In the following

proof of the ballot theorem, we include what is essentially their first proof of

the cycle lemma.

Proof 3. We can express a ballot permutation as a sequence of a + b terms

where each term is either 1 or −k; votes for A correspond to the 1’s and

votes for B correspond to the −k’s. A sequence is called good if every partial

sum is positive, and bad otherwise. Observe that the sum of a sequence is

a− kb ≥ 0.

Let C be any circular arrangement of a 1’s and b −k’s. We now prove

the cycle lemma: of the a+ b terms in C, exactly a−kb start good sequences

when C is read once around clockwise.

By the pigeonhole principle there must exist a sequence X = 1, 1, . . . , 1,−k

in C with k consecutive 1’s. No term of X can start a good sequence, for

when we get to the −k we would have a partial sum less than or equal to

zero.

Let C ′ be the circular arrangement created from C by removing X. Since

the sequence X has sum 0, it has no “net effect” on good sequences. Thus,

a term of C starts a good sequence if and only if the corresponding term in

C ′ starts a good sequence. Consequently, C and C ′ have exactly the same

number of terms that start good sequences. Continuing in this manner, one

removes sequences of the form 1, 1, 1, . . . , 1,−k until a circular arrangement

consisting only of 1’s remains. At this stage, there are a− kb 1’s, and every
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Figure 2: Example of C and C ′ with k = 3.

term starts a good sequence. Hence there are exactly a− kb good sequences

in C, and the cycle lemma is proved.

If there is periodicity in C then not all a − kb good sequences will be

distinct. However, we can conclude that the ratio of good sequences to all

sequences is a− kb to a + b. Therefore, the number of good sequences is

a− kb

a + b

(
a + b

a

)
.

Dvoretzky and Motzkin [12] state and prove the cycle lemma as a means

of solving the ballot problem, but Dershowitz and Zaks [11] point out that

this is a “frequently rediscovered combinatorial lemma” and they provide two

other applications of the lemma. They write,

The Cycle Lemma is the combinatorial analogue of the Lagrange

inversion formula; see Raney [22], Cori [10] and Gessel [13]. Other

proofs of varying degree of generality may be found in Dvoretzky

and Motzkin [12] (discussed in Grossman [15]), Motzkin [21] (two

proofs), Hall [16], Raney [22], Yaglom and Yaglom [32], Takács

[29], Silberger [25], Bergman [7] (three proofs), Sands [24] and
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Singmaster [26]. (The first paper [12] is not credited by the other

authors, but is referenced in Barton and Mallows [6] and Mohanty

[20].) Dvoretzky and Motzkin, Motzkin, and Yaglom and Yaglom

give the lemma in its general form; the other papers prove only

the case k = 1 or a − kb = 1. Generalizations of the Cycle

Lemma to non-integer k and sequences of reals may be found in

Dvoretzky and Motzkin [12] and Spitzer [27], respectively.

(Reference numbers and notation in the above quote have been modified for

consistency with this paper.)

Proof 4: A Uniform Partition

Consider the
(
2n
n

)
possible lattice paths starting from the origin and consisting

of n upsteps (1, 1) and n downsteps (1,−1). It turns out, surprisingly, that

the number of these paths with i upsteps above the x-axis (0 ≤ i ≤ n) is the

same, regardless of the value of i. Consequently, the number of paths with

all n upsteps above the x-axis must be
(
2n
n

)
/(n + 1). This fact is often called

the Chung-Feller theorem [9, Thm. 2A]; however, it was actually given 1909

by MacMahon [18, p. 167, §20] in the process of solving the ballot problem

(for k = 1) via the theory of partitions.

In the following proof we apply a similar approach by creating a set Ψ

with (a − kb)
(

a+b
a

)
elements, and partitioning this set into a + b subsets of

equal size (that is, we uniformly partition Ψ into a + b subsets). One of the

subsets corresponds to the set of good ballot permutations, and from this we

can conclude the ballot theorem. It appears that the following proof is the
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first to prove the ballot theorem by means of a uniform partition. It is based

on and extends the proofs found in [31].

Proof 4. Consider lattice paths starting from the origin and consisting of

a upsteps (1, 1) and b downsteps (1,−k), and assume the strict inequal-

ity a > kb. Let A = A(a, b, k) be the set of all such paths. Given path

P ∈ A we let L(P ) denote the set of x-values of the a − kb “rightmost

lowest” vertices of P ; see Figure 3. More precisely, given path P ∈ A,

let y0 denote the least y-value of all the vertices of P , and let r(t) de-

note the x-value of the rightmost vertex of P along the line y = t; then

L(P ) = {r(t) | t ∈ Z, y0 ≤ t ≤ y0 + (a− kb)− 1} .

Let Ψ = {(P, j) | P ∈ A, j ∈ L(P )} and note that |Ψ| = (a − kb) |A|.
Let Ωi = {(P, i) ∈ Ψ | i ∈ L(P )}, defined for 0 ≤ i ≤ a + b− 1. The sets Ωi

partition Ψ into a + b disjoint subsets.

Claim 1 : There is a one-to-one correspondence between Ω0 and the set

of good paths. If P ∈ A is good, then (0, 0) is the lowest vertex in P and it

is the only vertex on the x-axis, so (P, 0) ∈ Ω0. Conversely, if (P, 0) is in Ω0,

then no vertex of P can lie on the x-axis to the right of the origin, and so P

is good.

Claim 2 : The sets Ωi uniformly partition Ψ. We show this by providing

a one-to-one correspondence between Ωi and Ω0. If (P, i) ∈ Ωi, then write

P = XY where X is the initial path of P consisting of the first i steps, and Y

consists of the remaining steps. Since i ∈ L(P ), we can observe that Y stays

above the height of its initial vertex, and X never descends a − kb or more

units below the height of its terminal vertex. Consequently the path Y X

is good and (Y X, 0) ∈ Ω0. Conversely, if (Q, 0) ∈ Ω0, then write Q = Y X
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Figure 3: Example with k = 2, a = 6, b = 2. For each path P ∈ A, the path
P and the set L(P ) are shown. Observe that among all the sets L(P ), each
number from 0 to 7 occurs exactly 7 times.
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where X consists of the final i steps of Q. The same qualities of X and Y

hold as noted above, and the pair (XY, i) ∈ Ωi.

The two claims above imply that the number of good paths in A is

|Ω0| = |Ψ|
a + b

=
(a− kb) |A|

a + b
=

a− kb

a + b

(
a + b

a

)
.

Suppose we let Ai denote the set of paths for which i is among the x-

values of the a−kb rightmost vertices, i.e., Ai = {P ∈ A | i ∈ L(P )}. When

a − kb = 1, the sets A0,A1, . . . ,Aa+b−1 are disjoint and all have the same

cardinality. In other words, partitioning A according to the x-value of a

path’s rightmost lowest vertex creates a uniform partition of A.

Curiously, when we allow a − kb ≥ 1, the sets Ai continue to have the

same cardinality. However, they are no longer disjoint. To the contrary, each

path in A will be a member of precisely a− kb of these sets.

The Weak Ballot Problem, Catalan Numbers

The ballot problem is often stated in a “weak” version: suppose that candi-

date A receives m votes and candidate B receives n votes, where m ≥ kn for

some positive integer k, and compute the number of ways the ballots can be

ordered so that A always has at least k times as many votes as B throughout

the counting of the ballots.

Any ballot permutation in which A maintains at least k times the number

of votes for B can be converted into one in which A has more than k times

the number of votes for B by simply appending a vote for A to the beginning

of the permutation. Clearly this process is reversible, and hence the solution

to the weak version is the same as the “strict” version when A receives m+1
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votes and B receives n votes:

(m + 1)− kn

(m + 1) + n

(
(m + 1) + n

m + 1

)
=

m + 1− kn

m + 1

(
m + n

m

)
.

Putting k = 1 and m = n produces the well-known Catalan numbers

Cn =
1

n + 1

(
2n

n

)
.

Requiring only that m = kn produces the generalized Catalan numbers, also

called the k-Catalan numbers

Ck
n =

1

kn + 1

(
(k + 1)n

n

)
.

The interested reader should see [28, pp. 219–229] and Stanley’s website

http://www-math.mit.edu/~rstan/ec/ for an extensive list of combinator-

ial interpretations of the Catalan numbers. Furthermore, see [17] for several

interpretations of the generalized Catalan numbers.
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