

Figure 1. Various graphs of $y=f(x)$.

Behavior of functions at infinity: infinite limits and horizontal asymptotes ${ }^{1}$

Vic Reiner, Fall 2009
Consider the graphs of $y=f(x)$ shown in Figure 1 for the functions

$$
f(x)=2 x-x^{3}, \quad \frac{1}{x}, \quad \frac{2 x^{2}-5 x+8}{x^{2}+x+1}, \quad e^{x}, \quad \ln (x), \quad \tan ^{-1}(x)
$$

How would you describe what happens to these functions $f(x)$ when x gets large and positive, that is, as x approaches $+\infty$? What about when x gets large and negative, that is, as x approaches $-\infty$?

[^0]We seek some language involving limits to describe this. Informally, one might say $\lim _{x \rightarrow+\infty} f(x)=+\infty$ to mean that we can ensure that the values of $f(x)$ are arbitrarily large and positive by choosing x sufficiently large and positive. Similarly, one might say informally $\lim _{x \rightarrow+\infty} f(x)=L$ for some real number L to mean that we can ensure that the values of $f(x)$ are arbitrarily close to L by choosing x sufficiently large and positive. One could suitably modify these descriptions to define informally when

$$
\lim _{x \rightarrow+\infty} f(x)= \begin{cases}+\infty & \text { as with } f(x)=e^{x} \text { or } \ln (x) \\
-\infty & \text { as with } f(x)=2 x-x^{3} \\
L & \begin{array}{l}
\text { as with } f(x)=\frac{1}{x} \text { for } L=0 \\
\\
\text { or } f(x)=\frac{2 x^{2}-5 x+8}{x^{2}+x+1} \text { for } L=2 \\
\\
\text { or } f(x)=\tan ^{-1}(x) \text { for } L=\frac{\pi}{2}
\end{array}\end{cases}
$$

and

$$
\lim _{x \rightarrow-\infty} f(x)= \begin{cases}+\infty & \text { as with } f(x)=2 x-x^{3} \\ -\infty & \text { as with } f(x)=\frac{1}{x} \text { or } e^{x} \text { for } L=0 \\ L & \text { or } f(x)=\frac{2 x^{2}-5 x+8}{x^{2}+x+1} \text { for } L=2 \\ & \text { or } f(x)=\tan ^{-1}(x) \text { for } L=-\frac{\pi}{2}\end{cases}
$$

Note that for some functions one might have no limit at all for $f(x)$ as x approaches $\pm \infty$, that is, there is no real number L for which $\lim _{x \rightarrow \pm \infty} f(x)=L$, nor does $\lim _{x \rightarrow \pm \infty} f(x)=+\infty$, nor does $\lim _{x \rightarrow \pm \infty} f(x)=-\infty$. In this case, say that $\lim _{x \rightarrow+\infty} \sin (x)$ does not exist.

Example. $\lim _{x \rightarrow+\infty} \sin (x)$ does not exist. As x gets arbitrarily large and positive, the values of $f(x)=\sin (x)$ do not get arbitrarily large and positive, nor arbitrarily large and negative, nor do they approach closer and closer to any real number L. Rather the values of $f(x)$ forever oscillate, staying bounded between -1 and +1 .

As with definitions of the usual kinds of limits $\lim _{x \rightarrow a} f(x)=L$, one can capture the intuition behind these informal definitions $\lim _{x \rightarrow \pm \infty} f(x)$ with something formal.

Definition. Formally, define $\lim _{x \rightarrow+\infty} f(x)=+\infty$ to mean that for every $M>0$, there exists an $N>0$ such that the inequality $f(x)>M$ holds for all $x>N$.

Definition. Similarly, define formally $\lim _{x \rightarrow+\infty} f(x)=L$ for a real number L to mean that for every $\epsilon>0$, there exists an $N>0$ such that the inequality $|f(x)-L|<\epsilon$ holds for all $x>N$.

Similar modifications exist to define formally what is meant by the other variations $\lim _{x \rightarrow \pm \infty} f(x)= \pm \infty$ or $\lim _{x \rightarrow \pm \infty} f(x)=L$.
Definition. When either $\lim _{x \rightarrow+\infty} f(x)=L$ or $\lim _{x \rightarrow-\infty} f(x)=L$, one says that the horizontal line $y=L$ is a horizontal asymptote for the graph $y=f(x)$. One can also say that the curve $y=f(x)$ approaches the line $y=L$ asymptotically.
Example. Let's check formally that $\lim _{x \rightarrow+\infty} e^{x}=+\infty$. To do this, if our adversary names for us some $M>0$, we must find an N such that $e^{x}>M$ for all $x>N$.

A little thought, foresight, or experience with such arguments ${ }^{2}$ might suggest trying $N=\ln (M)$. And indeed one can check that for $x>N=\ln (M)$ one has

$$
f(x)=e^{x}>e^{N}=e^{\ln (M)}=M
$$

where that inequality in the middle is due to the fact that $f(x)=e^{x}$ is a monotonically increasing function of x.

The formal definitions can be used to prove limit laws similar to the ones we have seen for other limits: in situations where the limits of $f(x), g(x)$ which appear on the right side of these laws are real numbers (not $\pm \infty$), one has

$$
\begin{aligned}
\lim _{x \rightarrow \pm \infty}(f(x) \pm g(x)) & =\lim _{x \rightarrow \pm \infty} f(x) \pm \lim _{x \rightarrow \pm \infty} g(x) \\
\lim _{x \rightarrow \pm \infty} f(x) g(x) & =\lim _{x \rightarrow \pm \infty} f(x) \cdot \lim _{x \rightarrow \pm \infty} g(x) \\
\lim _{x \rightarrow \pm \infty} \frac{f(x)}{g(x)} & =\frac{\lim _{x \rightarrow \pm \infty} f(x)}{\lim _{x \rightarrow \pm \infty} g(x)}
\end{aligned}
$$

assuming $\lim _{x \rightarrow \pm \infty} g(x) \neq 0$ in this last law.
Another such law says that when $f(x)$ is a continuous function for all values x in the range of $g(x)$, and $\lim _{x \rightarrow \pm \infty} g(x)=L$ for some real number L, then $\lim _{x \rightarrow \pm \infty} f(g(x))=f(L)$.

This does not exhaust all the possible such limit laws. Also, some of these limit laws still apply even when $f(x), g(x)$ do not have finite limits.

Example. If $\lim _{x \rightarrow+\infty} f(x)=L$ and $\lim _{x \rightarrow+\infty} g(x)=+\infty$, then

$$
\lim _{x \rightarrow+\infty}(f(x)+g(x))=+\infty
$$

We sometimes abbreviate this law informally by saying " $L+\infty=+\infty$ ". Similarly, one has " $\frac{0}{\infty}=0$ ".

However, one has to be careful, as some cases where one would like to apply a limit law are indeterminate forms, like

$$
\frac{ \pm \infty}{ \pm \infty}, \quad \frac{0}{0}, \quad 0 \cdot(\pm \infty), \quad \infty \pm \infty
$$

Sometimes in these cases, algebraic manipulation and/or L'Hôpital's rule (a later calculus topic) comes to our aid.

Example. Starting from the fact (which one can justify from the formal definition) that integer powers x^{n} of x have

$$
\lim _{x \rightarrow \pm \infty} x^{n}= \begin{cases} \pm \infty & \text { if } n=1,2,3, \ldots \\ 1 & \text { if } n=0 \\ 0 & \text { if } n=-1,-2,-3, \ldots\end{cases}
$$

it's not hard to analyze the behavior at infinity for any rational function. Recall that a rational function is $h(x)=\frac{f(x)}{g(x)}$ where

$$
\begin{array}{r}
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{r} x^{r} \\
g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{s} x^{s}
\end{array}
$$

[^1]are polynomials, say of degrees r and s, so that $a_{r}, b_{s} \neq 0$.
If one tries to analyze $\lim _{x \rightarrow \pm \infty} h(x)$ by immediately using the quotient rule for limits it often leads to the indeterminate form $\frac{\infty}{\infty}$. However, a useful algebraic trick comes from realizing that if x^{N} is the highest power of x appearing anywhere in either $f(x)$ or $g(x)$ (so N is just maximum of the two degrees r and s), then these terms x^{N} wherever they occur will dominate the behavior of $f(x)$ when $x \rightarrow \pm \infty$. And we can "scale them away" by multiplying by $\frac{1 / x^{N}}{1 / x^{N}}$, leaving an equivalent limit, for which the quotient limit law will now work ${ }^{3}$ For example,
\[

$$
\begin{aligned}
\lim _{x \rightarrow \pm \infty} \frac{2 x^{2}-1}{x+1} & =\lim _{x \rightarrow \pm \infty} \frac{2 x^{2}-1}{x+1} \cdot \frac{1 / x^{2}}{1 / x^{2}} \\
& =\lim _{x \rightarrow \pm \infty} \frac{2-1 / x^{2}}{1 / x+1 / x^{2}} \\
& =\frac{\lim _{x \rightarrow \pm \infty}\left(2-1 / x^{2}\right)}{\lim _{x \rightarrow \pm \infty}\left(1 / x+1 / x^{2}\right)} \quad=\frac{2}{ \pm \infty}= \pm \infty \\
\lim _{x \rightarrow \pm \infty} \frac{2 x^{2}-1}{x^{2}+1} & =\lim _{x \rightarrow \pm \infty} \frac{2 x^{2}-1}{x^{2}+1} \cdot \frac{1 / x^{2}}{1 / x^{2}} \\
& =\lim _{x \rightarrow \pm \infty} \frac{2-1 / x^{2}}{1+1 / x^{2}} \\
& =\frac{\lim _{x \rightarrow \pm \infty}\left(2-1 / x^{2}\right)}{\lim _{x \rightarrow \pm \infty}\left(1+1 / x^{2}\right)} \\
& =\frac{2}{1}=2 \\
& =\lim _{x \rightarrow \pm \infty} \frac{2 / x-1 / x^{3}}{1+1 / x^{3}} \\
& =\frac{\lim _{x \rightarrow \pm \infty}\left(2 / x-1 / x^{3}\right)}{\lim _{x \rightarrow \pm \infty}\left(1+1 / x^{3}\right)} \quad=\frac{0}{1}=0
\end{aligned}
$$
\]

The graphs of these three rational functions are shown in Figure 2.
Doing this analysis in general for the rational function $\frac{f}{g}$ where f, g have degrees r, s and leading coefficients f_{r}, g_{s} shows the following ${ }^{4}$:

$$
\lim _{x \rightarrow \pm \infty} \frac{f(x)}{g(x)}= \begin{cases}0 & \text { if } r<s \\ \frac{f_{r}}{g_{s}} & \text { if } r=s \\ (-1)^{r-s} \operatorname{sign}\left(\frac{f_{r}}{g_{s}}\right) \cdot(\pm \infty) & \text { if } r>s\end{cases}
$$

where $\operatorname{sign}(x)=\frac{|x|}{x}$ give the sign ± 1 of a nonzero number x.

[^2]

Figure 2. The graphs of $y=h_{1}(x), h_{2}(x), h_{3}(x)$.

Exercises.

(a) Say whether $\lim _{x \rightarrow+\infty} f(x)$ is some real number L, or $+\infty$ or $-\infty$ or nonexistent for each of the following functions $f(x)$. Remember to give some justification for your answer.
(b) Do the same for $\lim _{x \rightarrow-\infty} f(x)$.
(c) Then list any horizontal asymptotes for the graph $y=f(x)$.

1. $f(x)=\cos (x)$
2. $f(x)=x \cos (x)$
3. $f(x)=\frac{1}{x(2+\cos (x))}$
4. $f(x)=x^{2} \sin (x)$
5. $f(x)=\frac{\sin (x)}{x^{2}}$
6. $f(x)=e^{-2 x} \sin (x)$
7. $f(x)=e^{2 x} \sin (x)$
8. $f(x)=\frac{x^{100}+x^{3}+x}{3 x^{50}+x^{4}+x-7}$
9. $f(x)=\frac{x^{100}+x^{3}+x}{3 x^{100}+x^{4}+x-7}$
10. $f(x)=\frac{x^{100}+x^{3}+x}{3 x^{101}+x^{4}+x-7}$
11. $f(x)=\tan ^{-1}\left(3 x^{3}+4 x-100\right)$
12. $f(x)=\tan ^{-1}\left(-3 x^{3}+4 x-100\right)$

[^0]: ${ }^{1}$ This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy of this license, go to http://creativecommons.org/licenses/by-nc-sa/3.0/
 or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, CA 94105, USA. If you distribute this work or a derivative, include the history of the document.

[^1]: ${ }^{2}$ The sometimes subtle art of how to pick the N correctly is not something we will emphasize in our version of Math 1271, as we won't often ask students to prove a limit is correct via the formal definition!

[^2]: ${ }^{3}$ Alternatively, one can do this same trick but multiply by $\frac{1 / x^{s}}{1 / x^{s}}$, which will also provide an illuminating scaling, and still work with the limit laws.
 $4 \ldots$ which is not really worth memorizing; the trick of multiplying $\frac{1 / x^{N}}{1 / x^{N}}$ is more important.

