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Figure 1. Various graphs of y = f(x).

Behavior of functions at infinity:

infinite limits and horizontal asymptotes1

Vic Reiner, Fall 2009

Consider the graphs of y = f(x) shown in Figure 1 for the functions

f(x) = 2x − x3,
1

x
,

2x2 − 5x + 8

x2 + x + 1
, ex, ln(x), tan−1(x).

How would you describe what happens to these functions f(x) when x gets large
and positive, that is, as x approaches +∞? What about when x gets large and
negative, that is, as x approaches −∞?
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We seek some language involving limits to describe this. Informally, one might
say limx→+∞ f(x) = +∞ to mean that we can ensure that the values of f(x) are
arbitrarily large and positive by choosing x sufficiently large and positive. Similarly,
one might say informally limx→+∞ f(x) = L for some real number L to mean that
we can ensure that the values of f(x) are arbitrarily close to L by choosing x
sufficiently large and positive. One could suitably modify these descriptions to
define informally when

lim
x→+∞

f(x) =































+∞ as with f(x) = ex or ln(x)

−∞ as with f(x) = 2x − x3

L as with f(x) = 1
x for L = 0,

or f(x) = 2x2−5x+8
x2+x+1 for L = 2,

or f(x) = tan−1(x) for L = π
2 ,

and

lim
x→−∞

f(x) =































+∞ as with f(x) = 2x − x3

−∞

L as with f(x) = 1
x or ex for L = 0,

or f(x) = 2x2−5x+8
x2+x+1 for L = 2,

or f(x) = tan−1(x) for L = −π
2 ,

Note that for some functions one might have no limit at all for f(x) as x approaches
±∞, that is, there is no real number L for which limx→±∞ f(x) = L, nor does
limx→±∞ f(x) = +∞, nor does limx→±∞ f(x) = −∞. In this case, say that
limx→+∞ sin(x) does not exist.

Example. limx→+∞ sin(x) does not exist. As x gets arbitrarily large and positive,
the values of f(x) = sin(x) do not get arbitrarily large and positive, nor arbitrarily
large and negative, nor do they approach closer and closer to any real number L.
Rather the values of f(x) forever oscillate, staying bounded between −1 and +1.

As with definitions of the usual kinds of limits limx→a f(x) = L, one can cap-
ture the intuition behind these informal definitions limx→±∞ f(x) with something
formal.

Definition. Formally, define limx→+∞ f(x) = +∞ to mean that for every M > 0,
there exists an N > 0 such that the inequality f(x) > M holds for all x > N .

Definition. Similarly, define formally limx→+∞ f(x) = L for a real number L
to mean that for every ǫ > 0, there exists an N > 0 such that the inequality
|f(x) − L| < ǫ holds for all x > N .

Similar modifications exist to define formally what is meant by the other varia-
tions limx→±∞ f(x) = ±∞ or limx→±∞ f(x) = L.

Definition. When either limx→+∞ f(x) = L or limx→−∞ f(x) = L, one says that
the horizontal line y = L is a horizontal asymptote for the graph y = f(x). One
can also say that the curve y = f(x) approaches the line y = L asymptotically.

Example. Let’s check formally that limx→+∞ ex = +∞. To do this, if our adver-
sary names for us some M > 0, we must find an N such that ex > M for all x > N .
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A little thought, foresight, or experience with such arguments2 might suggest trying
N = ln(M). And indeed one can check that for x > N = ln(M) one has

f(x) = ex > eN = eln(M) = M

where that inequality in the middle is due to the fact that f(x) = ex is a monoton-
ically increasing function of x.

The formal definitions can be used to prove limit laws similar to the ones we have
seen for other limits: in situations where the limits of f(x), g(x) which appear on
the right side of these laws are real numbers (not ±∞), one has

lim
x→±∞

(f(x) ± g(x)) = lim
x→±∞

f(x) ± lim
x→±∞

g(x)

lim
x→±∞

f(x)g(x) = lim
x→±∞

f(x) · lim
x→±∞

g(x)

lim
x→±∞

f(x)

g(x)
=

limx→±∞ f(x)

limx→±∞ g(x)

assuming limx→±∞ g(x) 6= 0 in this last law.
Another such law says that when f(x) is a continuous function for all values

x in the range of g(x), and limx→±∞ g(x) = L for some real number L, then
limx→±∞ f(g(x)) = f(L).

This does not exhaust all the possible such limit laws. Also, some of these limit
laws still apply even when f(x), g(x) do not have finite limits.

Example. If limx→+∞ f(x) = L and limx→+∞ g(x) = +∞, then

lim
x→+∞

(f(x) + g(x)) = +∞.

We sometimes abbreviate this law informally by saying “L+∞ = +∞”. Similarly,
one has “ 0

∞ = 0”.
However, one has to be careful, as some cases where one would like to apply a

limit law are indeterminate forms, like

±∞

±∞
,

0

0
, 0 · (±∞) , ∞±∞.

Sometimes in these cases, algebraic manipulation and/or L’Hôpital’s rule (a later
calculus topic) comes to our aid.

Example. Starting from the fact (which one can justify from the formal definition)
that integer powers xn of x have

lim
x→±∞

xn =











±∞ if n = 1, 2, 3, . . .

1 if n = 0

0 if n = −1,−2,−3, . . .

it’s not hard to analyze the behavior at infinity for any rational function. Recall

that a rational function is h(x) = f(x)
g(x) where

f(x) = a0 + a1x + a2x
2 + · · · + arx

r

g(x) = b0 + b1x + b2x
2 + · · · + bsx

s

2The sometimes subtle art of how to pick the N correctly is not something we will emphasize

in our version of Math 1271, as we won’t often ask students to prove a limit is correct via the

formal definition!
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are polynomials, say of degrees r and s, so that ar, bs 6= 0.
If one tries to analyze limx→±∞ h(x) by immediately using the quotient rule for

limits it often leads to the indeterminate form ∞
∞ . However, a useful algebraic trick

comes from realizing that if xN is the highest power of x appearing anywhere in
either f(x) or g(x) (so N is just maximum of the two degrees r and s), then these
terms xN wherever they occur will dominate the behavior of f(x) when x → ±∞.

And we can “scale them away” by multiplying by 1/xN

1/xN , leaving an equivalent limit,

for which the quotient limit law will now work3 For example,

lim
x→±∞

2x2 − 1

x + 1
= lim

x→±∞

2x2 − 1

x + 1
·
1/x2

1/x2

= lim
x→±∞

2 − 1/x2

1/x + 1/x2

=
limx→±∞(2 − 1/x2)

limx→±∞(1/x + 1/x2)
=

2

±∞
= ±∞

lim
x→±∞

2x2 − 1

x2 + 1
= lim

x→±∞

2x2 − 1

x2 + 1
·
1/x2

1/x2

= lim
x→±∞

2 − 1/x2

1 + 1/x2

=
limx→±∞(2 − 1/x2)

limx→±∞(1 + 1/x2)
=

2

1
= 2

lim
x→±∞

2x2 − 1

x3 + 1
= lim

x→±∞

2x2 − 1

x3 + 1
·
1/x3

1/x3

= lim
x→±∞

2/x − 1/x3

1 + 1/x3

=
limx→±∞(2/x − 1/x3)

limx→±∞(1 + 1/x3)
=

0

1
= 0

The graphs of these three rational functions are shown in Figure 2.
Doing this analysis in general for the rational function f

g where f, g have degrees

r, s and leading coefficients fr, gs shows the following4:

lim
x→±∞

f(x)

g(x)
=











0 if r < s,
fr

gs

if r = s,

(−1)r−ssign(fr

gs
) · (±∞) if r > s

where sign(x) = |x|
x give the sign ±1 of a nonzero number x.

3Alternatively, one can do this same trick but multiply by
1/xs

1/xs , which will also provide an

illuminating scaling, and still work with the limit laws.

4... which is not really worth memorizing; the trick of multiplying
1/xN

1/xN
is more important.
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Figure 2. The graphs of y = h1(x), h2(x), h3(x).

Exercises.

(a) Say whether limx→+∞ f(x) is some real number L, or +∞ or −∞ or nonex-
istent for each of the following functions f(x). Remember to give some justification
for your answer.

(b) Do the same for limx→−∞ f(x).
(c) Then list any horizontal asymptotes for the graph y = f(x).

1. f(x) = cos(x)

2. f(x) = x cos(x)

3. f(x) = 1
x(2+cos(x))

4. f(x) = x2 sin(x)

5. f(x) = sin(x)
x2

6. f(x) = e−2x sin(x)

7. f(x) = e2x sin(x)

8. f(x) = x100+x3+x
3x50+x4+x−7

9. f(x) = x100+x3+x
3x100+x4+x−7

10. f(x) = x100+x3+x
3x101+x4+x−7

11. f(x) = tan−1(3x3 + 4x − 100)

12. f(x) = tan−1(−3x3 + 4x − 100)


