Mach 5251 Polynomials (Chap. 10)

ACTIVE LEARNING

(1) Compute 20⁻¹ in 2/103

(2) Can you compute $GCD(x^{5}+x^{3}, x^{4}+1) \in \mathbb{F}_{2}[x]$? (Try Enclid's Algorithm!)

In fact, the same things we proved about division & Enclidean algorithm in 7 also work in F[x] where Fis any field like F= R, Q, C, F2, Fp pprime and for essentially the same reasons ...

PROPOSITION Given $f(x), g(x) \in \mathbb{F}[x]$ for a field \mathbb{F}_{f} there is a unique q(x), r(x) with $f(x) = g(x) \cdot g(x) + r(x)$ and $0 \leq \deg(r) < \deg(q)$ 9(×)_ proof: Use drision algorithm g(x) If(x) r(x) to find at least one such q(x), r(x). To see uniqueness, suppose $f(x) = q_1(x) \cdot q(x) + r_1(x)$ $= g_2(x) \cdot g(x) + r_2(x)$ with $0 \leq deg(r_i) deg(r_2) < deg(g)$ Then subtracting gives $(q_1(x) - q_2(x)) \cdot g(x) = r_1(x) - r_2(x)$ degree ≥ deg(g) degree < deg(g) if q1=q2 $\Rightarrow q_1 - q_2 = 0 = r_1 - r_2 \quad i.e. \quad q_1 = q_2, \quad r_1 = r_2 \quad \mathbf{E}$

PEOPOSITION For any
$$f(x), g(x) \in F[x]$$
 with F
any field, there exists $d(x) \in F[x]$ with
 $F[x] f(x) + F[x] g(x) = F[x] d(x)$
 $= \{a(x) f(x) + b(x)g(x)\}$:
 $a, b \in F[x] \}$
and $d(x)$ is unique if we further insist-that
it is monic, meaning $d(x) = x^{2} + d_{r,i}x^{-1} + \dots + dx + do$
for some $d_{0,i}, -d_{r,i} \in F$
Then we say $d(x) = GCD(f(x), g(x))$, since
 $d(x)$ is a common divisor of both $f(x), g(x)$
 $any other common divisor $e(x)$ of $-f(x), g(x)$
has $e(x) \mid d(x)$.
Also $\exists a(x), b(x) \in F[x]$ with
 $a(x) f(x) + b(x)g(x) = d(x)$
and one compute $d(x)$ via tucked fuelted is algorithm
and compute $a(x), b(x)$$

EXAMPLE What is GCD(x5+x3, x4+1) in TE(x]? × x⁴+1)x⁵+x³ <u>x⁵+x</u> x³+x $\stackrel{\vee}{=} \operatorname{GCD}(x^{4} + 1, x^{3} + x)$ $= GO(x^2+1,x^3+x)$ $x^{2}+x)x^{4}+1$ $x^{4}+x^{2}$ $= \chi^{2} + 1$ $(= (X+1)^2$ STACE (X+1)=X+2X+1 x2+1 $\frac{2}{x+1} \int \frac{x}{x^3+x} \frac{x^3+x}{x^3+x}$ $= \%^{2} (1)$

Compare this with these factorizations in IF,[x]: $\chi^{3} + \chi^{3} = \chi^{3} (\chi^{2} + \iota) = \chi^{3} (\chi + \iota)^{2}$ $\chi^{4} + 1 = (\chi_{+1})^{4}$ k GCD is $(\chi_{+1})^{2} = \chi^{2} + 1$ We'll come back to factorization later!

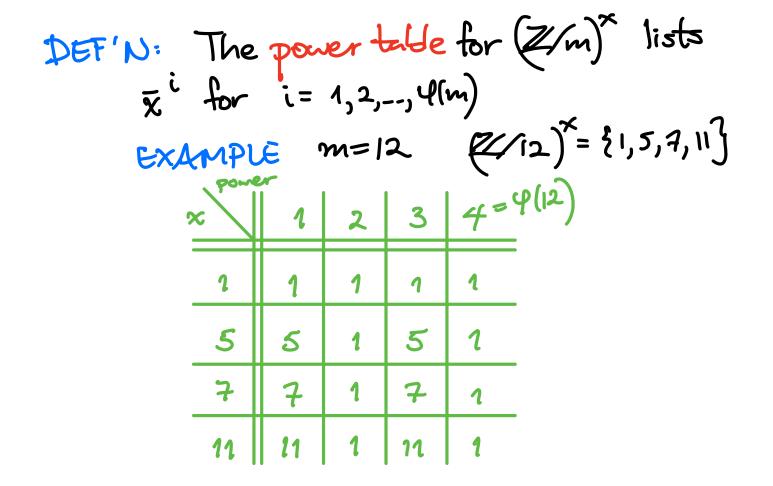
(sketch) of PROP: Veny smilar to post proof of PROP: Veny smilar to post that mZ+nZ = dZ for d= smallest nonnegative integer in mZ+nZ Now we let d(x) be the smallest degree monic polynomial in FT(x].f(x)+ FT(x].g(x). Then smillarly show HxJd(x) = HTxJf(x) + HTxJg(x) and d(x) has the other properties. REMARK IF being a field does play a role here. For example, Z is not a field and in ZGJ, one ran check that $\mathbb{Z}[x] \cdot x + \mathbb{Z}[x] \cdot 2 \neq \mathbb{Z}[x] \cdot d(x)$

fir) n

for any polynomial dbx).

Euler's and Fermat's Theorems
$$(\frac{33}{6}, 10, 69)$$

= some amazing features of our finite rings Z/m
DET'N: In a ring R, the set of units is
 $R^{\times} := i u \in R$: n has a mult. inverse n''
 $ie. u \cdot n'=1$
EXAMPLES
(1) Fields F are exactly the rings
for which $F^{\times} = F - i0$
 $S^{\times} = R - i0$
 $Q^{\times} = Q - i0$
 $R^{\times} = R - i0$
 $R^{\times} = R - i0$
 $Q^{\times} = Q - i0$
 $F_{p}^{\times} = F_{p} - is$ if p is prome
(2) $Z^{\times} = \{\pm, 1\} \neq Z - i0\}$
(3) $(Z/nZ)^{\times} = \{\pm, 1, \pm, 5, \pm, 5, \pm, 7, \pm, 5, \pm, 1, 5, \pm, 1, 1\}$
 $so 9(12) = \{Z/nZ\}^{\times} = 4$



(1) Write down (Im)^x and its power table
for m= 5,6,7. Make a conjecture based on this.
(2) Try to factor these polynomials as far as possible: x²-x in ff₂[x] x³-x in ff₃[x] x⁵-x in ff₅[x] THEOREM: In aring R where R^{\times} is finite, say of cardinality $N := |R^{\times}|$, one has $u^{N} = 1$ $\forall u \in R^{\times}$ $\int Take R = Z/m$, so $N = \varphi(m) = |Zem^{\times}|$

 $\int Let m = p \ a \ prime, \ so \ N = \left. \frac{\varphi(p)}{\varphi(p)} \right| = \frac{\varphi(p)}{\varphi(p)} = \frac{\varphi(p)}{\varphi(p)}$

COROLLARY 2: (Fernatis Little Thun) Every $\alpha \in \mathbb{F}_{p}^{x} = (\mathbb{Z}/p)^{x}$ $= \mathbb{F}_{p}^{-1} \circ j^{x}$ satisfies $\alpha^{p-1} = 1$. Consequently, every $\alpha \in \mathbb{F}_{p}$ satisfies $\alpha^{p} = \alpha$ is therefore a root of $f(x) = x^{p} - x$.

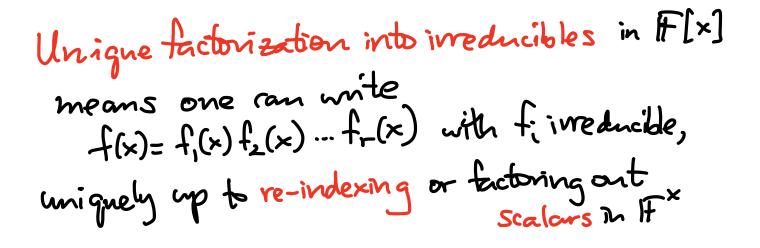
proof of THEOREM
A clever idea: list the elements of
$$\mathbb{R}^{\times}$$
 as $r_{1}, r_{2}, ..., r_{N}$
e.g. $\mathbb{R} = \mathbb{Z}/2$, $\mathbb{R}^{\times} = \mathbb{Z}/2$, $\mathbb{Z}^{\times} = \mathbb{Z}/2$, $\mathbb{Z}/2$

So since -f(x)=x^P-x has every x ∈ IFp as a not for p prime, we'd like to conclude we can factor $x^{p}-x = \prod (x-\alpha) \text{ in } \mathbb{F}_{p}[x]$ xeff e.g. $\chi^{5} - \chi = \chi(\chi - 1)(\chi - 2)(\chi - 3)(\chi - 4)$ and that this factorization is unique, since each factor x-x is included Can't be factored further Does this work in Hp[x] ?? (Disturbing/cantionary) EXAMPLE Let $f(x) = x^2 - 5x = x(x - 5)$ in $\mathbb{Z}/6[x]$ But also $f(x) = (x-\bar{2})(x-\bar{3})$ $= \chi^2 - (\bar{2} + \bar{3}) \times + \bar{6} = \chi^2 - \bar{5} \times$ So $\chi(x-\overline{5}) = (x-\overline{2})(x-\overline{3})$ in $\mathbb{Z}/6[x]$ No unique factorization! Also, f(x) has $\overline{0}, \overline{5}, \overline{2}, \overline{3}$ as distinct noots, but is not divisible by $(x-\overline{0})(x-\overline{5})(x-\overline{2})(x-\overline{3}) = (x^2-\overline{5}x)$

Not to worry: IFp being a field fixes both problems... PROPOSITION: When IF is a field, and f(x) E IF[x] that has I distinct roots a, ..., are ETF will have $f(x) = (x - \alpha_1) \cdots (x - \alpha_n) g(x) \text{ for some } g(x) \in \mathbb{F}[x]$ with deg(g) = deg(f) - l. In particular $l \leq deg(f)$ so f(x) can't have more than deg(f) distinct roots. proof: Induction on l. BASE CASE : L=1 If $d_1 \in \mathbb{F}$ is a root of f(x), use division algorithm to write f(x)= (x-04) q(x)+ r $(x-\alpha, f(x))$ with $0 \le \deg(r) < 1$ s reff $\deg(x - \alpha_1)$ But then $0 = f(\alpha_1) = (\alpha_1 - \alpha_1)q(\alpha_1) + r$ ⇒ o=r $\Rightarrow f(x) = (x - \alpha_1) q(x)$ with deg(g)= deg(f)-1 <

NDUCTIVE STEP: Assume
$$l \ge 2$$
.
Since $\alpha_1, ..., \alpha_{g-1}$ are distinct roots of $f(x)$, we
know by induction $f(x) = (x - a_1) \cdots (x - \alpha_{g-1}) \hat{g}(x)$
where $deg(\hat{g}) = deg(f) - (l-1)$.
But since α_1 is also a root of $f(x)$,
 $o = f(\alpha_g) = (\alpha_g - \alpha_1) \cdots (\alpha_g - \alpha_{g-1}) \hat{g}(\alpha_g)$
 $\neq 0$ $\neq 0$
 $i = 0$
 $i =$

What about unique factorization in
$$\mathbb{F}[x]$$
?
First, what should it mean...
DEFIN: Say $f(x) \in [\mathbb{F}[x] - i0]$ is irreducible
if the only factorizations $f(x) = g(x)h(x)$
have either $g(x)$ or $h(x)$ of degree 0,
meaning a scalar in \mathbb{F}^{\times} .
EXAMPLE
 $\chi^{3} - 1 = (\chi - 1)(\chi^{2} + \chi + 1)$ in $\mathbb{R}[x]$
is not irreducible,
but $\chi - 1$ | are both irreducible
 $\chi^{2} + \chi + 1 = 3 \cdot (\frac{1}{3}\chi^{2} + \frac{1}{3}\chi + \frac{1}{3})$



EXAMPLE
$$x^3 - 1 = (x - 1)(x^2 + x + 1)$$

 $= (x^2 + x + 1)(x - 1)$
 $= (2x^2 + 2x + 2)(\frac{1}{2}x - \frac{1}{2})$
 $= \dots$
does not contradict unique factorization in R(x];
they are all considered the same factorization.
The key here is a property of irreducibles in IF(x]
similar to primes p in Z:
if a prime p ab, then p a or p |b
EXAMPLES $x + 12 = 120$ but $12 + 8$, $12 + 15$
while $3 + 8 + 15 = 120$ but $12 + 8$, $12 + 15$
while $3 + 8 + 15 = 120$ but $12 + 8$, $12 + 15$
while $3 + 8 + 15 = 120$ forcing $3 + 8 = 3 + 5$
(2) ln Z/6 [x], $x - \overline{2}$ is irreducible
and $x + x^2 - \overline{5}x = (x - \overline{3})(x - \overline{3})$, but $x + x - \overline{3}$, $x + x - \overline{3}$

Proposition: If F is a field and
$$f(x) \in IF[x]$$

is inveducible, then $f(x) \mid g(x)h(x)$
 $\implies f(x) \mid g(x)$ or $f(x) \mid h(x)$.

Suppose $f \mid g \cdot h$, but $f \nmid g$. We'll show $f \mid h$.
Let $d(x) = GcD(f(x), g(x))$.
Then since $d \mid f$ and f is inveducible,
either $d(x)=1$ or $d(x)=f(x)$.
(and the ppensive else $f(x)=d(x) \mid g(x)$
(but $f \restriction g$)
So $1 = d(x) = GcD(f(x), g(x))$
 $\implies 1 = a(x)f(x) + b(x)g(x)$ for some
 $a, b \in F[x]$
 $h(x) = a(x)f(x)h(x) + b(x)g(x)h(x)$
 $div b f div. b f$

COROLLARY For IF a field, every f(x) E IF [x] can be written $f(x) = f_i(x) - - f_r(x)$ with each fi irreducible, uniquely up to reindexing and multipolying fi by scalars in IF. proof: Existence of some irreducible factorization is pretty easy by induction on deg (f) : either f is irreducible, or factor it f = g.h with deg(g), deg(h) >0 deg(g), deg(h) < deg(f) induction $g=g_1=g_2$, $h=h_1=h_m$ each gi, h' irreducible $f = g_1 - g_2 h_1 - h_m$

For uniqueness, also induct on deg(f).
Assume
$$f = f_1 f_2 - f_r = g_1 g_2 - g_s$$

with all f_i, g_j irreducible.
Since $f_1 | f = g_1 g_2 - g_s$, either
 $f_1 | g_1$ or $f_1 | g_2 - g_s$
 $f_1 = cg_1$ keep going!
for some ceff
Eventually you conclude $f_1 = cg_j$ for some ceff
 $f_1 = cg_1$, and rescale the g_1, g_2 to
make $f_1 = g_1$. Then $f = f_1 f_2 - f_r$
 $= f_1 g_2 - g_s$
So $c = f_1 f_2 - f_r - f_1 g_2 - g_s = f_1 (f_2 - f_r - g_2 - g_s)$
 $f_2 - f_r = g_2 - g_s$ and by induction on degree,
can re-index and rescale to make $r = s, f_i = g_i$