Math 5251 Minimum distance
\& linear codes (Chap. 12)
Recall Shannon's Noisy Coding Theorem said we could find q-ary codes $C \subset \Sigma^{*}$ (so $q=|\Sigma|$) whose words all have the same length n (called the block length of C) havinghigh gary rate $\frac{\log _{8}(m)}{n}$ where $m=|C|$ and probability of error in decoding $\rightarrow 0$ an $n \rightarrow \infty$, by picking the m wo de words of C randomly.

This makes it tough to do minimum distance decoding, that is, decode a received $y=\left(y_{1}, \rightarrow y_{n}\right)$ as $x=\left(x_{1}, \longrightarrow x_{n}\right)$ where x is any word in C that minimizes the Hamming distance $d(x, y):=\left|\left\{i: x_{i} \neq y_{i}\right\}\right|$.

Our ability to defect/ correct errors this way is controlled by...

DEF'N: The minimum distance of code C is

$$
d=d(C):=\min \left\{d(x, y): \begin{array}{l}
x, y \in C \\
x \neq y
\end{array}\right\}
$$

Call C an (n, m, d) q-any code
if $n=$ block length of its words

$$
\begin{aligned}
m & =|C| \\
d & =d(C) \\
q & =|\Sigma|
\end{aligned}
$$

PROPOSITION: An (n, m, d) q-any code can
(i) defect up to $d-1$ errors
(ii) correct up to $\left\lfloor\frac{d-1}{2}\right\rfloor$ errs via min. distance decoding $C_{\text {greatest integer } \leqslant \frac{d-1}{2}}$

It will be easy to prove, but first left's see ...
Examples
(1) $C=\{000,110,101,101\}$

$$
C\left(\mathbb{F}_{2}\right)^{3}=\text { words of length using } \sum=\mathbb{F}_{2}=\{0,1\}
$$

is a $(3,4,2) \begin{gathered}11 \\ \text { 2 any code }\end{gathered}$
length " $|e| \quad d^{\prime \prime}(e)$
that can detect $1(=d-1)$ bit errors,
but cannot correct any errors at all (Why?)

$$
\left(\text { and } 0=\left\lfloor\frac{d-1}{2}\right\rfloor=\left\lfloor\frac{1}{2}\right\rfloor\right)
$$

Note that it is a parity check code (Why?)
(2) This 3 -fold repetition code

$$
\begin{aligned}
& \text { This 3-fold repetition code } \\
& C_{3}=\{000,111,222,333,444\} \subset\left(\mathbb{F}_{5}\right)^{3}
\end{aligned}
$$

is a $(3,5,3) 5$-any code that an is a $(3,5,3) 5$-any code that can
detect up to 2 errors, correct 1 enor. (Why?)
$=d-1$
$=\left\lfloor\frac{d-1}{2}\right\rfloor$

The 4 -fol diversion of the repetition a de

$$
\begin{aligned}
& \text { The } 4 \text {-told version of the repetrioun wa } \\
& C_{4}=\{0000,111,2222,3333,4444\} \subset\left(\mathbb{F}_{5}\right)^{4}
\end{aligned}
$$

is $(4,5,4) 5$-any, detecting up to 3 errors $=d-1$
still correcting only 1 error

$$
=\left\lfloor\frac{\alpha-1}{2}\right\rfloor
$$

The 7-fold version

$$
\begin{aligned}
& \text { The 7-told version } \\
& C_{7}=\{0000000,11111,2222222,3333333,4444444\} \\
& \subset\left(\mathbb{F}_{5}\right)^{7}
\end{aligned}
$$

$$
\subset\left(\mathbb{F}_{5}\right)^{7}
$$

is $(7,5,7)$ s-ary, detecting up to 6 error correcting up to 3 errs.

$$
=\left\lfloor\frac{d-1}{2}\right\rfloor
$$

proof of PROPOSITION: Assume $d(C)=d$.
Then any sent word $x \in l$ comupted by noise to a received word y with $\leq d-1$ letters different will have $d(x, y) \leqslant d-1<d(C)$, so $y \notin C$, and recipient will detect this.
If the received y has $\leq\left\lfloor\frac{d-1}{2}\right\rfloor$ letters different from the sent x,
then x is the unique word in C with $d(x, y) \leq\left\lfloor\frac{d-1}{2}\right\rfloor$, else $\exists x^{\prime} \in C$ with $x^{\prime} \neq x$
and $d\left(x^{\prime}, y\right) \leq\left\lfloor\frac{\alpha-1}{2}\right\rfloor$,
so $\quad d\left(x, x^{\prime}\right) \leq d(x, y)+\frac{d\left(y, x^{\prime}\right)}{11}$

$$
\begin{aligned}
& \text { TRIANGLE }=d(x, y)+d\left(x^{\prime}, y\right) \\
& \text { INEQUALITY holdS } \\
& \text { for Hamming } \\
& \text { distance (Why?) } \\
& \left.\leq \frac{d-1}{2}\right\rfloor+\left\lfloor\frac{d-1}{2}\right\rfloor
\end{aligned}
$$

contradiction $d=d(C)$
Linear Codes
Computing $d(C)$ and doing min. distance decoding turn out to be much easier when we pick $C \subset\left(\mathbb{F}_{q}\right)^{n}$ where \mathbb{F}_{q} is a field with q elements and C is a k-dimensional linear subspace inside $\left(\mathbb{F}_{q}\right)^{n}$.

NOTATION: Such a k-dimensional subspace $C \subset\left(\mathbb{F}_{q}\right)^{n}$ is called an $[n, k, d] \mathbb{F}_{q}$-linear code if $d=d(e)$, (and it will tum out that $m=|e|=q^{k}$, so it is an ($\left.n, q^{k}, d\right)$ gary code in the previous notation).

What does this mean??
Recall linear subspaces $C \subset \mathbb{R}^{n}$ for small n :

theorigh

$$
n=2
$$

$$
n=3
$$

\mathbb{R}^{3}

We can similarly try to visualize linear subspaces in $\left(\mathbb{F}_{q}\right)^{n}$ for small n :

$$
C=\left\{\left[\begin{array}{ll}
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
2
\end{array}\right]\right\}
$$

$$
=3 \text {-any } 2 \text {-fld }
$$ repetition code is a 1-dimensional subspace, a line through o in $\left(F_{3}\right)^{2}$

$$
\begin{aligned}
& \left(\mathbb{F}_{3}\right)^{2} \\
& \left.C=\left\{\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2
\end{array}\right], \begin{array}{l}
2 \\
n \\
3 \\
1
\end{array}\right],\left[\begin{array}{l}
4 \\
4
\end{array}\right]
\end{aligned}
$$

a 1-dimensional subspace in $\left(\mathbb{F}_{5}\right)^{2}$

$$
C=\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}
$$

our 2-ary
parity check code is a 2-dimensional subspace of $\left(\mathbb{F}_{2}\right)^{3}$. It's a plane through 0 with equation $x_{1}+x_{2}+x_{3}=0$ in $\left(\mathbb{F}_{2}\right)^{3}$

Review of linear algebra and
vector spaces over a field $\left(\$ \int 12.5,12.6,12.7\right.$,

$$
\text { A. } 1, \text { A. } 2)
$$

DE'N: A vector space V over a field \mathbb{F}_{2} is a set V with 2 operations with
"redon" operations vector addition +

$$
\begin{aligned}
& V \times V \longrightarrow V \\
& (v, \omega) \longrightarrow v+\omega
\end{aligned}
$$

and scalar multiplication

$$
\begin{aligned}
& \mathbb{F} \times V \longrightarrow V \\
& (c, V) \longmapsto c V
\end{aligned}
$$

satisfying some reasonable axioms that were used to from $V=\mathbb{R}^{n}$ and $\mathbb{F}=\mathbb{R}$

$$
\begin{aligned}
& \text { ecg. + is.communtative } v+w=\omega+v \\
& \text { - associate }(u+v)+w=u+(v+\omega) \\
& \text { - has an identity } \underline{Q}+v=v \\
& \text { zerovector a } \\
& \text { - has inverses }(-v)+v=0
\end{aligned}
$$

Scalar milt. and t distribute over each ter

$$
\begin{aligned}
& c(v+\omega)=c v+c \omega \\
& \left(c+c^{\prime}\right) v=c v+c^{\prime} v
\end{aligned}
$$

Costly, $1 \in \mathbb{F}$ has $1 \cdot v=v \quad \forall v \in V$
A (linear) subspace WCV is just a nonempty subset closed under addition, $v \mapsto-v$, and scalar milt. (so W is itself an \mathbb{F}-vector space)

An \mathbb{F}_{q}-linear code is just a subspace $C \subseteq\left(\mathbb{F}_{q}\right)^{n}$ where $\left(\mathbb{F}_{q}\right)^{n}=\left\{\right.$ column vector $\left.\left[\begin{array}{l}x_{1} \\ x_{2} \\ \dot{x}_{n}\end{array}\right]: x_{i} \in \mathbb{F}_{q}\right\}$ with usual + and scalar mutt:

$$
\begin{aligned}
& {\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]+\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{n}+y_{1} \\
\vdots \\
\vdots \\
x_{n}+y_{n}
\end{array}\right]} \\
& c\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right]
\end{aligned}
$$

Examples
(1) For pa prime,
the pay u-foldrepefion code $C \subset\left(\mathbb{F}_{p}\right)^{n}$ is the lime through o consisting of all \mathbb{H}_{p}-scalar multiples of $\left[\begin{array}{l}1 \\ 1 \\ i\end{array}\right]$, that is

(2) The binary singe parity check code of length n is

$$
C=\left\{\begin{array}{c}
(2-a y) \\
\left.\left.\left\{\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]: x_{i} \in \mathbb{F}_{2}, x_{1}+x_{2}+\ldots+x_{n}=0 \text { in } F_{2}\right\} \begin{array}{c}
10,1 \\
\text { i.e. evenly many } x_{i} \text { are } 1 \text { 's }
\end{array}\right\} \subset\left(\mathbb{F}_{2}\right)^{n}
\end{array}\right.
$$

$$
n=3: C=\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}
$$

$$
n=4: C=\left\{\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\right\}
$$

Q: Why is the single parity check code $C \subset \mathbb{F}_{2}^{n}$ always a subspace of F_{2}^{n} ?

Spanning, linear independence,
bases, dimension
DEF' N : For a subspace $W \subset V$ a vector space ser \mathbb{F},
say $\omega_{1},-\omega_{m} \in W$ span W if every $w \in W$
can be written $\omega=a_{1} \omega_{1}+\ldots+c_{m} \omega_{m}=\sum_{i=1}^{m} s_{i} \omega_{i}$
for some $c_{i} \in \mathbb{F}$
Examples
(1) The n-fold p-any repetition code $C c\left(\mathbb{T}_{p}\right)^{n}$ is spanned by $\left.\left[\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right]\right\}$ names
(or by any $\left[\begin{array}{c}c \\ c \\ \vdots \\ c\end{array}\right]$ with $c \in \mathbb{F}_{p}^{x}=\mathbb{F}_{p}-\{0\}$; Why?)
(2) The single parity check code of length 3

$$
C=\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\} \subset\left(\mathbb{F}_{2}\right)^{3}
$$

is spanned by $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ i\end{array}\right]\right\}$
since $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]=0 \cdot\left[\begin{array}{l}1 \\ 0\end{array}\right]+0 \cdot\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$

$$
\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=1 \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]+1 \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

DEF'N: A generator matrix G for a linear code C is anymatrix whose vows span C, $C_{\text {vectors }}$
that is C is the row space of G.

ExAMPLES
(1) p-ary u-fold repetition wade $C \subset\left(\mathbb{F}_{p}\right)^{n}$ has generator matrix

$$
G=\underbrace{[11 \ldots \ldots .1]}_{\text {nentries }}
$$

(2) parity check code $C=\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\} c\left(\mathbb{F}_{2}\right)^{3}$ has generator matrix

$$
G=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \text { (or } G=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \text { or } G=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \text {) }
$$

DEE'N: Say $v_{1},, v_{m} \in V$ a vector space over \mathbb{F} are linearly dependent if $\exists c_{n}, \ldots, c_{m} \in \mathbb{F}$ not all 0 with $q v_{1}+\ldots+c_{m} v_{m}=$.
Otherwise, if $c_{1} v_{1}+\cdots+c_{m} v_{m}=0$ forces $c_{1}=\ldots=c_{m}=0$,
say $v_{1},-, v_{m}$ are linearly independent.
Examples

- is always lin. dependent
$v \neq 0$ is always lin. indep.
v_{1}, v_{2} are lin. dependent $\Leftrightarrow V_{2}=c V_{1}$ for some $c \in \mathbb{F}$

v_{1}, v_{2}, v_{3} are lin. dependent \Longleftrightarrow they lie on a common plane through o

DEF'N: Say $\omega_{1},-, \omega_{k}$ are a basis for $W \subset V$ if they are lin. Indep. and span W.
examples
(i) $\left[\begin{array}{l}1 \\ \vdots \\ i\end{array}\right]$ is a basis for the peary repetition code $C_{C}\left(E_{p}\right)^{n}$
(2) The parity check code $\left.C=\left\{\begin{array}{l}10 \\ 0 \\ 0\end{array}\right),\left[\begin{array}{l}1 \\ 0\end{array}\right),\binom{1}{1},\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\} c\left(\mathbb{F}_{2}\right)^{3}$

SOME LINEAR ALGEBRA FACTS (familiar when $\mathbb{F}=\mathbb{R}$ or C, but work over all fields \mathbb{F})

- Evenglin. indep. set in W is contained in abasis for W.
- Wren spanning set for W contains a basis for W.
- Every basis $v_{1, \ldots}, v_{n}$ for W has the same size n called the dimension $n=\operatorname{dim}_{F}(W)=\operatorname{dim}(W)$

$$
\begin{aligned}
& \operatorname{dim}_{F}\left(\mathbb{F}^{n}\right)=n \text { since } e_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], e_{2}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right] r, e_{n}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] \\
& \text { are a basis for it }
\end{aligned}
$$

are a basis for it

- W_{1} a subspace of $W_{2} \Rightarrow \operatorname{dim}\left(W_{1}\right) \leq \operatorname{dim}\left(W_{2}\right)$

EXAMPLE \mathbb{F}^{2} only has subspaces of dimensions $0,1,2$

dimension 0

dimension ?

dimension 2

