Mach 5251 Minimum distance & linear codes (Chap. 12)

Recall Shannon's Noisy Coding Theorem Said we could find q-any codes $C = Z^*$ (so g = |Z|) whose words all have the same length n (called the block length of C) having high q-any rate $\frac{\log_q(m)}{n}$ where m = |C|and probability of error in decoding $\rightarrow 0$ an $n \rightarrow \infty$, by picking the m code words of C randomly.

This makes it tough to do moment distance
decoding, that is, decode a received
$$y=(g_{1,3}, g_n)$$
 as $x=(x_n, -, x_n)$ where
x is any word in C that minimizes the
Hamming distance $d(x, y):=([i: x_i \neq y_i]].$

Our ability to detect/ arrect errors this way is controlled by ...

DEF'N: The minimum distance of code C is $d=d(\mathcal{C}):=\min \left\{ d(x,y): x,y\in \mathcal{C} \right\}$ $x\neq y$ Call C an (n,m,d) g-any code if n = blocklength of its words m = (C)d=d(C) g= 121 PROPOSITION: An (n,m,d) grany code can (i) detect up to d-1 emors (ii) correct up to $\lfloor \frac{d-1}{2} \rfloor$ errors via min. distance decoding -greatest integer < d-1

H will be easy to prove, but first let's see ...
EXAMPLES
(1)
$$\mathcal{O} = \{000, 110, 101, 101\}$$

 $C(\mathbb{F}_2)^3 = nords of length 3 using $\Sigma = \mathbb{F}_2 = \{0, 1\}$
is a $(3, 4, 2)$ 2-any code
 $n m d$ (binary)
length 1Cl d(C)
that can detect 1 (= d1) bit errors
but can rot correct any errors at all (Why?)
 $(and o = \lfloor \frac{d-1}{2} \rfloor = \lfloor \frac{d}{2} \rfloor$
Note that it is a parity check code (Why?)
(2) This 3-fold repetition code$

The 4-fold version of the repetition ode

$$C_{4} = \{0000, 1111, 2222, 3333, 44444\} \subset (F_{5})^{4}$$

is $(4, 5, 4)$ 5-any detecting up to 3 errors
 $= d-1$
still correcting only 1 error
 $= \begin{bmatrix} d-1\\ 2 \end{bmatrix}$
The 7-fold version
 $C_{7} = [0000000, 111111, 2222222, 3333333, 4444444]$
 $\subset (F_{5})^{7}$
is $(7, 5, 7)$ 5-any, detecting up to 6 errors
 $= d-1$
correcting up to 3 errors.
 $= \begin{bmatrix} d-1\\ 2 \end{bmatrix}$

proof of PROPOSITION: Assume d(C)=d. Then any sentword XEC compted by noise

Then any sent word $\chi \in C$ with $\leq d-1$ letters different to a received word γ with $\leq d-1$ letters different will have $d(x, \gamma) \leq d-1 < d(C)$, so $\gamma \notin C$, and recipient will detect this.

If the received y has $\leq \lfloor \frac{d}{2} \rfloor$ letters different from the sent x,

then x is the unique word in C with , else Jx'∈ C with x'≠x $d(x,y) \leq \begin{bmatrix} \frac{d-1}{2} \end{bmatrix}$ and $d(x,y) \leq \lfloor \frac{x}{2} \rfloor$) $\leq d(x,y) + d(y,x')$ so d(x,x') = d(x,y) + d(x',y)TRIANGLE INEQUALITY holds for Hamming $\leq \frac{d-1}{2} + \frac{d-1}{2} \leq d-1 < d$ distance (Why?) contradiction d=d(C) I

Linear lodes

Omputing d(C) and doing min. Aistance decoding turn out to be much easier when we pick $C \subset (F_g)^n$ where F_g is a field with g elements and C is a k-dimensional linear subspace inside $(F_g)^n$. NOTATION: Such a k-dimensional subspace (° c (Fg)ⁿ is called an [n, k, d] Fg-linear code if d=d(C), (and it will turn out that m= [C] = g^k, so it is an (n, g^k, d) g-any code in the previous notation). What does this mean ?!

Recall linear subspaces C = R for small n:

n=3

Review of linear algebra and (\$\$12.5, 12.6, 12.7, vector spaces over a field (\$\$12.5, 12.6, 12.7, A.1, A.2)

DEFIN: A vector space V over a field Fa sialars is a set V with 2 operations with operations vector addition + (vectors $\vee \vee \vee \longrightarrow \vee$ (ν, ω) 🥌 ν_τω and scalar multiplication F×V -> V (c, v) → ev

sobstigning some reasonable exiting that we've
used to from
$$V = TR^n$$
 and $F = TR$
e.g. + Ts. commutative $V \in W = u + V$
 $associative (uw) + W = u + (v + w)$
 $bes an identity $Q + v = V$
 $bes inverses (-v) + v = Q$
Scalar mult. and + distribute over each other
 $c(v + w) = cv + cw$
 $(colly, 1 \in F$ has $1 \cdot v = V$ $V = V$
Is just a nonempty subset closed under
addition, $v \mapsto -v$, and scalar mult.
 $(so W is itself on F-vector space)$
An F_q -linear code is just a subspace $C = (F_q)^n$
where $(F_q)^n = \{column vectors {x_1 \choose x_1} : x \in F_q\}$
with used + and scalar mult:
 $a finite field$
 $with gelements$$

$$\begin{bmatrix} x_{i} \\ \vdots \\ x_{n} \end{bmatrix}_{f} \begin{bmatrix} y_{i} \\ \vdots \\ y_{n} \end{bmatrix}_{f} \begin{bmatrix} x_{i} xy_{i} \\ \vdots \\ x_{n} + y_{n} \end{bmatrix}$$

$$= \begin{bmatrix} Cx_{i} \\ \vdots \\ cx_{n} \end{bmatrix}$$

EXAMPLES

(1) For p a prime,
the p-any n-fold repetition code
$$C \subset (\mathbb{F}_p)^n$$

is the line through 9 consisting of all
 \mathbb{F}_p -scalar multiples of $\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$, that is
 $C = \left\{ \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}, \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}, \begin{bmatrix} 2\\ 2\\ 1 \end{bmatrix}, -, \begin{bmatrix} p-1\\ p-1\\ p-1 \end{bmatrix} \right\} = \left\{ c \begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix}; ce \mathbb{F}_p \right\}$

(2) The binary single party check ade of length n is

$$\begin{array}{c} (2 - any) \\ (3 -$$

Q: Why is the single parity check code C = F2" always a subspace of F2"?

Spanning, linear independence,
bases, dimension
DEF'N: For a subspace
$$W \subset V$$
 a vector space our F ,
Say $W_{3,-}, W_m \in W$ span W if every $w \in W$
can be arithmed $w = q_{w,+} - + c_m w_m = \sum_{i=1}^{m} c_i w_i$
for some $C_i \in IF$
Examples
(i) The n -fold p -any repetition code $C_C(F_p)$
is spanned by [1] in times
(or by any $\begin{bmatrix} c \\ c \\ c \end{bmatrix}$ with $ce F_p = F_p - \{o\}$; $Why?$)
(2) The angle party check code of length 3
 $C = \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1$

EXAMPLES
(1) p-any n-fold repetition code
$$C \subset (\mathbb{F}_p)^n$$

has generator matrix
 $G = [1 \land \cdots \land 1]$
n entries
(2) panty check code $C = \{ [\stackrel{\circ}{b}], [\stackrel{\circ}{b}], [\stackrel{\circ}{b}], [\stackrel{\circ}{h}], [\stackrel{\circ}{h}]] \subset (\mathbb{F}_2)^n$
has generator matrix
 $G = [\stackrel{1}{1} \land 0]$ (or $G = [\stackrel{1}{0} \land 1]$ or $G = [\stackrel{1}{0} \land 1]$)

Examples
(1)
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 is a basis for the p on repetition code $C_{c}(\mathbf{F})$
(2) The party heck code $C_{=}\{[\overset{\circ}{0}], [\overset{\circ}{1}], [\overset{\circ}{1}], [\overset{\circ}{1}]\}_{*} \subset (\mathbf{F})^{*}$
has bases $\{[\overset{\circ}{1}], [\overset{\circ}{1}]\}_{*}, \{[\overset{\circ}{1}], [\overset{\circ}{1}]\}_{*}, \{[\overset{\circ}{1}], [\overset{\circ}{1}]\}_{*}, \{[\overset{\circ}{1}], [\overset{\circ}{1}]\}_{*}$

Some UNEAR ALGEBRA FACTS
(familier when F= R or C, but work
over all fields F)
• Every lin. Indep. set in W is contained in about the basis br.W.
• Every spanning set for W contains a basis for W.
• Every basis vin vn for W has the same size n
(alled the almension n= dam_F(W) = dam(W)
• dim_F(Fⁿ) = n since e_i:
$$\begin{bmatrix} n \\ 0 \\ 0 \end{bmatrix}$$
, e_2 : $\begin{bmatrix} n \\ 0 \\ 0 \end{bmatrix}$, e_3 : $\begin{bmatrix} n \\ 0 \\ 0 \end{bmatrix}$, e_4 : $\begin{bmatrix} n \\ 0 \\ 0 \end{bmatrix}$, e_5 : $\begin{bmatrix} n \\ 0 \\ 0 \end{bmatrix}$,