Encoding, decoding with linear codes ($\$ 12.7,12.8$)
Having $C \subset\left(\mathbb{F}_{q}\right)^{n}$ a linear code amplifies many things.
PROPOSITION: For a linear code $C \subset\left(\mathbb{F}_{q}\right)^{n}$, one can compute the minimum distance

$$
\begin{aligned}
& d(e)\left[:=\min \left\{d\left(x, x^{\prime}\right): x, x^{\prime} \in C, x \neq x^{\prime}\right\}\right] \\
& \text { as } d(C)=\min \{\underbrace{d(y, 0)}: x \in C-\{0\}\} \\
& =\#\left\{i: y_{i} \neq 0\right\}=: \operatorname{\omega t}(y)
\end{aligned}
$$

called the Hamming weight of y
proof: Note by definition that

$$
\begin{aligned}
& \text { proof: Note by definition that } \\
& \begin{aligned}
d\left(x, x^{\prime}\right):=\#\left\{2: x_{i} \neq x_{i}^{\prime}\right\} & =\#\left\{i: x_{i}-x_{i}^{\prime}=0\right\} \\
& =d\left(x-x^{\prime}, 0\right)=\cos \left(x-x^{\prime}\right)
\end{aligned}
\end{aligned}
$$

Also when C is linear, since $0 \in C$,

EXAMPLE The Hamming $[7,4,3]$-code ($(\$ 12.4$) was the basis for the parlor trick on the st day. It has generator matrix

$$
\begin{aligned}
& \text { It has generator matrix } \\
& G=\left[\begin{array}{llll|lll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
r_{1} & \frac{r_{2}}{} & \frac{\omega t(-)}{3} \\
r_{3} & 3 & 3 \\
r_{4} & 4
\end{array}\right.
\end{aligned}
$$

and also contains non-zerio vedors

$$
\begin{aligned}
r_{1}+r_{2} & =\left[\begin{array}{llll|llll}
1 & 1 & 0 & 0 & 0 & 1 & 1
\end{array}\right] \\
r_{1}+r_{4} & =\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 0 & 0
\end{array}\right] \\
r_{1}+r_{2}+r_{3} & =\left[\begin{array}{llllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right] \\
r_{1}+r_{2}+r_{4} & =\left[\begin{array}{llllllll}
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \\
r_{1}+r_{2}+r_{3}+r_{4} & =\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

and a few move, but $d(C)=\min \{3,4,7\}$
$=3$
as claimed in $[7,4,3]$) $) ~$
How many in total, that is, what is $m=1 e \mid$?

PROPOSITION: A k-dimil subspace $C \subset\left(F_{\xi}\right)^{\cdot}$ has size $m=|C|=q^{k}$.
So $[n, k, d] \mathbb{H}_{c}$-linear codes are $\left(n, q^{k}, d\right) q$-any. with gravy rate $(C)=\frac{\log _{s}(m)}{n}=\frac{k}{n}$
proof: Pick any basis w_{1}, \ldots, w_{k} for C.
Then we claim (checked below) that the map

$$
\begin{aligned}
&\left(\mathbb{F}_{q}\right)^{k} \xrightarrow{f} C \\
& c=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{k}
\end{array}\right] \longmapsto f(c)=c_{1} w_{1}+c_{2} \omega_{2}+\cdots+q_{k} \omega_{k} \\
&|\rho|=\left|\left(\mathbb{F}_{5}\right)^{k}\right|=q \cdot q \cdot-q=q^{k} .
\end{aligned}
$$

is a bijection, so $|C|=\left|\left(\mathbb{F}_{8}\right)^{k}\right|=\underbrace{q \cdot q \cdot-q}_{k \cdot t m e s}=q^{k}$.
Surjectivity comer from the fact that $\omega_{n},-, \omega_{k}$ span C, by definition of spanning.
Injectivity comes from the lin. independence of the $\omega_{1}, \ldots, \omega_{k}$: if $f(c)=f(d)$ for some c, d then $q_{1} \omega_{1}+\ldots+c_{k} \omega_{k}=d_{1} \omega_{1}+\ldots+d_{k} \omega_{k}$

$$
\begin{aligned}
& \Rightarrow\left(c_{1}-d_{1}\right) \omega_{1}+\ldots+\left(c_{k}-d_{k}\right) \omega_{k}=0 \\
& \Rightarrow c_{1}-d_{1}=\ldots=c_{k}-d_{k}=0 \\
& \Rightarrow c=\underline{d} \quad \text { 圈 }
\end{aligned}
$$

It's easier to work with generator matrices in...
DEE'N: Standard form for a generator matrix G of an $[n, k, d]$ q-any code:

$$
G=\underbrace{\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & -1 & 0 & 1
\end{array}\right]}_{\begin{array}{c}
k \times k \text { identity } \\
\text { matrix }
\end{array} I_{k}} \underbrace{A}_{\begin{array}{c}
n-k \\
\text { columns }
\end{array}} \underbrace{A k \text { rows }}_{\begin{array}{c}
\text { on arbibary } \\
k \times(u-k) \text { marbix } \\
\text { cithentries in } \mathbb{F}_{q}
\end{array}}
$$

EXAMPLES (1) We just gave $[7,4,3]$ Hamming rode via a standard form generator matrix

$$
G=\left[\begin{array}{lll|lll}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 \\
I_{4} & 1 & \underbrace{}_{A} & 1
\end{array}\right]
$$

(2) The binary parity check code $\left.C=\left\{\begin{array}{l}I_{4} \\ A \\ x_{1} \\ \vdots \\ x_{n}\end{array}\right\} \begin{array}{c}x_{i} \in \mathbb{F}_{2} \\ \sum x_{i}=0\end{array}\right\}$ has a standard form generator matrix

$$
G=\left[\begin{array}{llll}
1 & & & \begin{array}{c}
h \\
1
\end{array} \\
& \ddots & & 1 \\
\vdots \\
& & & \\
I_{n-1} & & \underbrace{}_{A}
\end{array}\right]
$$

PROPOSITION Not every linear code C has a opnevator matrix G in standard form, but if we apply a single permutation to its columns, we can make a new code C^{\prime} that does (and has all the same parameters $[n, k, d]$).
proof: 1. Start with any generator matrix for C.
2. Use Gaussian eliminator = row operations $\left\{\begin{array}{l}\text { swapping rows } \\ \text { scaling rows by ce } \mathbb{F}_{8}^{x} \\ \text { adding rows the och other }\end{array}\right.$
to put it in row-reduced echelon form
3. It needed, apply a permutation of columns to make the piNot columns all to the left:

EXAMPLE The ternary 3 -fold repetition code C in $\left(\mathbb{F}_{3}\right)^{3}$
$C=\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]\right\}$ has $2^{\text {nd }}$ extension

but $G=\left[\begin{array}{lllll}2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 2 & 2\end{array}\right]$ is, at though not in standard form.

$2($ mow 1) \smile
sake mine ${ }^{2}=2$
$\left[\begin{array}{lllll}11 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \text { (1) } & 1\end{array}\right] \leftarrow$ row-reduced ache on form but not standard form

Swap

$$
x_{1} x_{3}=x_{4} x_{2}=x_{5}=x_{6}
$$

284
$G=\left[\begin{array}{ll|lll}1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1\end{array}\right] \quad \begin{gathered}\text { generates a different code } \\ \text { than }\end{gathered}$ ($^{(2)}$ but both are than $C^{(2)}$, but both are $[6,2,3]$ temay codes

Encoding becomes particularly simple it C has generator $G=\left[\begin{array}{l|l}I_{k} & A\end{array}\right]$ in standard for

$$
=\left[\begin{array}{lll|l|ll}
1 & & & 1 & 1 & 1 \\
& 1 & c_{1} & & \\
& c_{2} & c_{2 k} & c_{1} & 1 & 1
\end{array}\right] .
$$

Given a word $v=\left(v_{1}, \ldots, v_{k}\right)$ with k letters in $\left(T_{q}\right)^{k}$, apply the encoding map

EXAMPLES
(1) Binary panty cheek code $C \subset\left(\mathbb{F}_{2}\right)^{n}$

and encodes $V=\left[v_{1}, \ldots v_{n-1}\right] \in\left(\mathbb{F}_{2}\right)^{n-1}$
as $v G=[\underbrace{v_{n}, \ldots, v_{n-1}}_{\text {info bits }}, \mid \underbrace{v_{1}+v_{2}+\cdots+v_{n-1}}_{\text {pa ty }}] \in\left(\mathbb{F}_{2}\right)^{n}$
parity check bit
(2) The Hannning $[7,4,3]$ woe C had

$$
G=\left[\begin{array}{llll|lll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

so it encodes $v=\left[v_{1}, v_{2}, v_{3}, v_{u}\right] \in\left(\mathbb{F}_{2}\right)^{4}$

Dual codes (\$12.8)
DEF'N: Given a linear code $C \subset\left(\mathbb{F}_{\delta}\right)^{n}$, its dual code $C^{\perp}:=\left\{y \in \mathbb{F}_{g}^{n}: x_{i} y=0 \quad \forall x \in e\right\}$ (pera). (perpendicular)
usual dot product

We think of the vectors $y \in C^{\perp}$ as being the parity checks (over F_{2}) on the vectors $x \in C$.

EXAMPLE The binary parity check woe $C \subset\left(\mathbb{F}_{2}\right)^{n}$ has $C^{\perp}=$ the binary repetition code oflenigh n

$$
=\left\{\left[\begin{array}{l}
0 \\
\vdots \\
\vdots
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
\vdots
\end{array}\right]\right\}
$$

$$
n=3
$$

PROPOSITION
(i) If C is a k-dimil linear code in $\left(\mathbb{F}_{q}\right)^{n}$ then $C^{\frac{1}{1}}$ is an $(n-k)$-dimil linear code in $\left(\mathbb{F}_{q}\right)^{n}$.
(ii) Furthermore, if C has generator matrix $G=\left[\begin{array}{l|l}I_{k} & A\end{array}\right]$ in standard form, then C^{\perp} has generator matrix (not in standard form) $H=\left[-A^{t} \mid I_{n-k}\right]$ (sometimes called a check mabix for C).
(iii) Lastly, $\left(C^{\perp}\right)^{\perp}=C$.

EXAMPLE The 3 -dinil linear code $C \subset\left(\mathbb{H}_{3}\right)^{5}$ with generator matrix $G=\left[\begin{array}{lllll}1 & 0 & 1 & 1 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 2\end{array}\right]$ has dual code $C^{\perp} \subset\left(\mathbb{F}_{3}\right)^{5}$ of dimension $5-3=2$ and generator matrix

$$
H=\left[\begin{array}{lll|ll}
-1 & -0 & -0 & 1 & 0 \\
-2 & -1 & -2 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll|ll}
2 & 0 & 0 & 1 & 0 \\
1 & 2 & 1 & 0 & 1
\end{array}\right]
$$

(sketch) proof of Prop:
C^{\perp} is always a subspace since $y, y^{\prime} \in C^{\perp}$

$$
\Rightarrow \begin{aligned}
y-x=0 \\
y^{\prime} \cdot x=0
\end{aligned} \quad \forall x \in e \Rightarrow \begin{aligned}
& (c y) \cdot x=-c(y \cdot x)=c \cdot 0=0 \\
& \left(y+y^{\prime}\right) \cdot x=y \cdot x+y^{\prime} \cdot x \\
& =0+0=0
\end{aligned}
$$

For the rest of the proof assume, by re-indexing coordinates in $\left(\mathbb{F}_{5}\right)^{n}$, that C has generator matrix $G=\left[I_{k} \mid A\right]_{k}$ in standard form and let $H=\left[-A^{+-1} \mid I_{n-k}\right]$ as in the PRop.
H's easy to check the wows of H lie in C^{\perp}, that is, they dot to 0 with rows of G :

$$
\begin{aligned}
& (\text { now } i \text { of } G) \cdot(\text { nowjof } H)=[\overbrace{i-\cdots 1 \cdots 0}^{k} \mid(\text { (row io } A)] \text {. } \\
& i=1,-k \quad j=1,-, n-k
\end{aligned}
$$

$$
\begin{aligned}
& =-a_{i j}+a_{i j}=0
\end{aligned}
$$

The cows of $r_{1}, \rightarrow r_{n-k}$ of H are lm. indep. inside C^{\perp} because of the I_{u-k} in the right most coldenns of H.

Thus it only remains to show r_{1}, r_{n-k} span C^{+}, and then they would be a basis for C^{+}, showing all of the rest of (i) \& (ii) (and then (iii) follows by swapping roles of C, e^{\perp}).
To see the spanning, given $y=\left[d_{1} \cdots d_{k} c_{1} \cdots c_{n-k}\right] \in e^{+}$, we claim $y=c_{1} r_{1}+\ldots+c_{n k} r_{n-k}$:
NEe $y!=y-\left(c_{1} r_{1}+\ldots+c_{n-k} r_{n-k}\right)$ also lies in e^{\perp} and has the form $y^{\prime}=\left[d_{1}^{\prime} \cdots d_{k}^{\prime} 0 \ldots .0\right]$,
but then $0=($ row i of $G) \cdot y^{\prime}=d_{i}^{\prime}$ forces $y^{\prime}=0$ for $i=1,2, c^{k}$

This has a useful consequence (disused in §14.1). COROLCARY: Given dual linear codes C and C^{1}, the min. distance $d(C)$ has this reformulation: $d(C)=$ smallest number d of columns in the generator matrix H for \sum^{\perp}, involved in a nontrivial lin. dependence

$$
H=\underbrace{\left[\begin{array}{cccc}
\begin{array}{ccc}
1 & 1 & \\
v_{1} & v_{2} & \cdots
\end{array} & 1 \\
1 & \cdots & v_{n}
\end{array}\right]}_{\text {columns of } H}
$$

proof: Since $C=\left(C^{\perp}\right)^{\perp}=(\text { row space of } H)^{\perp}$, the (nonzero) vectors $x=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right] \in C$
are the same as (nonzero) vectors in the mullspare of H ie. $\underline{o}=H_{x}=\left[\begin{array}{ccc}1 & \ldots & 1 \\ v_{1} & \ldots & v_{n} \\ 1 & & 1\end{array}\right]\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]=x_{1} v_{1}+\ldots .+x_{n} v_{n}$ i.e. (non-bivial) Imear dependencies among $v_{1},-, v_{n}$ and the Hamming weight at $(x)=d$ tells us how many v_{i} 's are actually used in the dependence. So minimizing the d gives $d(C)=\min \left\{\omega t(x): x f\left(-\frac{10}{}\right)\right\}$. [造

Note this says H the $(n-k) \times n$ gen. matrix for C^{1} having

- no zeno columns $\Rightarrow d(e) \neq 1, \operatorname{sod}(e) \geqslant 2$
- no pair of dependent columns $\Rightarrow d(C) \neq 2$, (parallel)

$$
\text { so } d^{\prime}(e) \geq 3 \text {. }
$$

IDEA: Try to find such H with $n-k$ small, so k is large and rate (C) $=\frac{k}{n}$ is large.

EXAMPLE: This is exactly how Hamming cooked up his $[7,4,3]$ binary code, and more generally, the Harming $[\underbrace{2^{r}-1}_{n}, 2^{r}-1-r, 3]$ codes C_{γ} :
pick C_{r}^{\perp} to have $r \times\left(2^{r}-1\right)$ generator matrix H_{r} whose columns are all nonzero vectors in $\left(\mathbb{F}_{2}\right)^{r}$:

$$
\begin{array}{r}
\left.H_{2}=\begin{array}{l|ll}
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \\
-A^{*}
\end{array} I_{2} \quad \begin{array}{r}
G_{2}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] \begin{array}{l}
\text { generates } \\
I_{1} \\
\text { binary }
\end{array} \\
\begin{array}{l}
\text { 3-fold repefion }
\end{array} \\
{[3,1,3] \text {-code }}
\end{array}
$$

$$
\begin{array}{r}
\left.H_{3}=\left[\begin{array}{llll|lll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]\right\} r=3 \Rightarrow G_{3}=\left[\begin{array}{llll|lll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right] \\
-A^{t}
\end{array} \underset{I_{3}}{\substack{I_{4} \\
\text { generates }}}
$$

bray Hannsing $[7,4,3]$-are

Their rates quickly improve as r grows:

$$
\operatorname{rate}\left(C_{r}\right)=\frac{k}{n}=\frac{2^{r}-1-r}{2^{r}-1}=1-\frac{r}{2^{r}-1} \underset{\text { ar } r \rightarrow \infty}{\longrightarrow} 1
$$

But their min. dist. $d\left(C_{r}\right)=3 \forall r$, which doesn't lead to any better error-correction than $1=\left\lfloor\frac{3-1}{2}\right\rfloor$.
REMARK Hamming more generally defined his \mathbb{F}_{q}-linear $\left[n, k, d_{11}\right]$-codes the same way:
$\frac{q^{n}-1}{q^{\prime \prime}} q^{n-1}-r{ }^{n} \quad C^{\perp}$ has generator matrix
H whose columns pick one vector from each line though \therefore in $\left(\mathbb{F}_{q}\right)^{r}$.
EXERCISE: Why are there $\frac{q^{2}-1}{\frac{1}{6}-1}$ such lines?

Syndrome decoding (\$12.8)
Given our $[n, k, d]$ linear code $C \subset\left(\mathbb{F}_{f}\right)^{n}$, after the transmitter encodes their message as some $x \in C$, suppose some noise in transmission lets us receive $y \in\left(\mathbb{F}_{q}\right)^{n}$.
Q: How do we do min. distance decoding of $y \in\left(\mathbb{F}_{g}\right)^{n}$ efficiently, that is, how to find some $x^{\prime} \in C$ minimizing $d\left(x^{\prime} y\right)$?

The method called syndrome decoding works pretty well, and starts by having us pre-compute

$$
H={ }_{n-k}\left\{\left[-A^{t} \mid I_{n-k}\right] \text { generating } C^{\perp}\right.
$$

from $G=k\left\{\left[I_{k} \mid A\right]\right.$ generating C.

DEF'N: The syndrome for $y \in\left(\mathbb{F}_{8}\right)^{n}$ is the vector $H y \in\left(\mathbb{F}_{q}\right)^{n-k}$

$$
n-k\left\{\left[-A^{t} \mid I_{n-k}^{\prime \prime}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{0}(\text { row n of } t) \\
y_{0}(\text { row of } H) \\
\vdots \\
y_{0}(\text { rown-k of } H)
\end{array}\right]\right.
$$

Note: Garrett calls yH^{t} the syndrome of y. This is just the same now vector instead of a column vector.

How does the syndrome My help decide y?
It turns out that $\left(\mathbb{T}_{q}\right)^{n}$ decomposes disjointly into sets (affine subspaces parallel to C) called the corsets $v+C:=\{v+x: x \in C\}$ of the subspace C, and we can read off which coset y lies in from its syndrome My.

ExAmples:
(1) Coset of lines C through $\{\underline{0}\}$ are its parallelimes

(2) Similar idea over fine fields \mathbb{F}_{ξ},
e.g. binary parity check code $\left.C=\left\{\begin{array}{l}x_{1} \\ \vdots \\ x_{n}\end{array}\right]: \begin{array}{l}x_{i} \in \mathbb{F}_{2} \\ x_{1}+\ldots+x_{n}=0\end{array}\right\}$
has one other coset $\left.r+C=\left\{\begin{array}{c}x_{1} \\ x_{n} \\ x_{n}\end{array}\right]: \begin{array}{l}x_{i} \in \mathbb{F}_{2} \\ x_{1} \ldots+x_{n}=1\end{array}\right\}$

C

PROPORTION:
(i) Two coset $v+C, v^{\prime} \in C$ intersect at all \Leftrightarrow the corsets are the same : $v+C=v^{\prime}+C$ $\Leftrightarrow r-v^{\prime} \in C$
$\stackrel{(c)}{\Longleftrightarrow} H v=H v^{\prime}$ in $\left(\mathbb{F}_{6}\right)^{n-k}$, ie. v, v^{\prime} have same syndrome
(ii) All coset $r+C$ have same size as $C(=0+C)$, nannely $\left.\right|_{v+} C\left|=|C|=q^{k}\right.$ if $k=\operatorname{dim}_{F_{b}}(C)$
So the corsets $v e C$ disjointly decompose $\mathbb{F}_{q}{ }^{n}$ into q^{n-k} sets, each of size q^{k}
proof: For (i), certainly if $v+C=v^{\prime}+C$ then they intersect, but conversely if $w \in(v+C) \cap\left(v^{\prime}+C\right)$ then $w=v+x=v^{\prime}+x^{\prime}$ for some $x, x^{\prime} \in C$
so $v-v^{\prime}=x^{\prime}-x \in C$ and then $v+C=v^{\prime}+\underbrace{\left(v-v^{\prime}\right)+C}_{=C \text { since } v v^{\prime} \in C}=v^{\prime}+C$. This shows (a), (b).

For (c), note $v-v^{\prime} \in C$

$$
\Longleftrightarrow \quad v-v^{\prime} \in\left(e^{\perp}\right)^{\perp}
$$

$\Leftrightarrow v-v^{\prime}$ has zeno dit product with all vectors in $C^{\frac{1}{1}}=$ row space of H
$\Longleftrightarrow\left(r-v^{\prime}\right) \cdot($ row i of $H) \quad \forall i=1, \ldots, n-k$

$$
\Longleftrightarrow H\left(v-v^{\prime}\right)=0
$$

$$
\Leftrightarrow H v=H v^{\prime}
$$

For (ii), note that the maps $C \underset{g}{\underset{~}{\underset{~}{\leftrightarrows}}} v+C$

$$
\begin{gathered}
x \stackrel{f}{\longmapsto} v+x \\
x=y-v \longleftrightarrow_{g} y=v+x
\end{gathered}
$$

are mutually averse bijection,
so $|v+e|=|e|=q^{k}$ 国
SYNDROME DECODING FOR C:
Given H a $(k-n) \times n$ matrix generating e, do a precompitation to find in each of the q^{n-k} cossets $v+C$ a coset leader $e_{\min }$ such that $\omega t\left(e_{\text {min }}\right)=\min \left\{\omega t(v): v \in e_{\text {min }}+e\right\}$.
Tabulate these coset leaders $V_{\text {min }}$ and their syndromes Hemin in a syndrome table.

Then when you receive che transmitted word $y \in\left(\mathbb{F}_{q}\right)^{n}$, compute its syndrome $H y$, find the unique coset leader $e_{\min }$ having $H_{y}=H_{e_{\min }}$, and decode y as $x^{\prime}=y-e_{\min }$.

PROPOSITION: Syndrome decoding is min. distance decoding, that is,

$$
d\left(x^{\prime}, y\right) \leq d(x, y) \forall x \in C \text { if } x^{\prime}=y-e_{\min }
$$

where $H y=H e_{\text {min }}$ and $e_{\text {min }}$ has smallest Hamming weight in $e_{\min }+C$.
proof: Suppose not, that is, there exists some $x \in C$ with

$$
\begin{aligned}
& d(y, x)<d\left(y, x^{\prime}\right) \\
& d(0, y-x) \\
& \omega t^{\prime \prime}(\underline{y-x})
\end{aligned}
$$

$$
\begin{aligned}
& \text { "d(y,y-e min }) \\
& \text { II } \\
& d\left(0, e_{\text {min }}\right) \\
& \text { Contradiction 圆 }
\end{aligned}
$$

EXAMPLE of syndrome decoding.
Suppose C is the $[5,3,2]$ code in $\left(\mathbb{F}_{2}\right)^{5}$ with generatormatrix $G=\left[\begin{array}{lll|ll}1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1\end{array}\right]=\left[I_{3} \mid A\right]$
so e^{\perp} has gen. matrix $H=\left[\begin{array}{lll|ll}1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1\end{array}\right]=\left[-A^{+} \mid I_{2}\right]$
We pre-compute a syndrome table by brute fore:
a coset leader $e_{\text {min }}$ syndrome He min

$\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$	$\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$	$\left[\begin{array}{l}1 \\ 0\end{array}\right]$
$\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$	$\left[\begin{array}{l}0 \\ 1\end{array}\right]$
$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$

On transmitter's end, say they encode info $v=[111]$ as

$$
x=v G=\left[\begin{array}{lll}
1 & 1
\end{array}\right]\left[\begin{array}{lll|ll}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll|ll}
1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

and in transmission it is competed and received as one of these:

$$
y=\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 0
\end{array}\right]
$$

$$
y^{\prime}=[11010]
$$

compute
ryonome tHy

$$
\begin{aligned}
H y= & {\left[\begin{array}{lll|ll}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1 \\
1 \\
0
\end{array}\right] } \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

matching $H e_{\min }$ for $e_{\text {min }}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]$

$$
\begin{gathered}
x^{\prime}=y-e_{\min }=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right] \\
=x
\end{gathered}
$$

success!
subtract $e_{\text {min }}$

$$
x^{\prime}=y-e_{m-n}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

$$
\neq x
$$

failure
$\binom{$ inn evitable since 1 error }{ occurred and $d(C)=2}$

