1st order Reed-Muller Codes (not in Garrett, in Roman §G.2) So far the only non-repetition usdes we've seen were [n, k, 3]; none with d(C) > 3!DEF'N: The (1st order) Reed-Muller code RM(1,m) is an [n, k, d] IF,-linear ade, 2^m m+1 2^{m-1} that we will define recursively on m. In 1971-72, the Mainer 9 Mars orbiter transmitted black & white image data using the RM(1,5) code, which was $[2^{5}, 6, 2^{4}]$ 32

As a [32,6,16] code, its binary rate was
only
$$\frac{6}{32} \approx \frac{1}{5}$$
 (so comparable to s-fold repetition code),
but it could correct up to $\lfloor \frac{16-1}{2} \rfloor = 7$ errors
(much better than $\lfloor \frac{5-1}{2} \rfloor = 2$ errors for 5-fold repetition code).
 $M = 1: RM(1,1) := (\mathbb{F}_2)^2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$
with generator matrix $G(x) = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ (not standard
form, but
that's ok)
 $M \ge 2:$ Having defined RM(1, m-1)
with generator $G(m-1)$,
 $RM(1,m) \stackrel{\text{DEF}}{=} \{ (v, v), (v, [11...1]+v) : v \in RM(1, m-1) \}$
 $V \in RM(1, m-1) \} C (\mathbb{F}_2)^m$
with gen. matrix 2^{m-1}
 $G(m) = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$

$$RM(1,3)$$
 has 16 codewords in $(H_2)^8$

with
$$G(3) = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

 $G(2)$
 $G(3) = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$

PROPOSITION: The it order Reed-Muller code
RM (1,m) is an [n, k, d]
$$\mathbb{F}_2$$
-linear code,
 2^m min 2^{m-1}
and has every codeword other than
 $\left[\begin{array}{c} 0 = [0 \circ - - \circ] \right] \quad \text{of weight exactly } 2^{m-1}$
proof: Prove it all by induction on M ,
with base case $RM(1,1) = (\mathbb{F}_2)^2$ easy to check.
Inductive step:
First check
 $RM(1,m) = \{(v,v), (v, 1+v): v \in RM(1,m+1)\}$
is a subspace inside $(\mathbb{F}_2)^{2^m}$:
 $(v,v) + (w,\omega) = (v+\omega, v+\omega)$ if $v, \omega \in RM(1,m-1)$
 $(v,v) + (v, 1+\omega) = (1+v+\omega)$ if $v, \omega \in RM(1,m-1)$
 $(v,v) + (1+\omega, 1+\omega) = (1+v+\omega)$
 $(1+v, 1+\omega) = (1+v+\omega)$
(Checking closure under scaling and $v \mapsto -v$
is antomatic over \mathbb{F}_2 ?

Once one knows
$$RM(1, n_1)$$
 is an F_1 -linear subspace,
one knows its dimension is $1 + \dim_{F_2} RM(1, m_1)$
 $= 1 + n_1$
because it has twice as many codewords as $RM(1, m_1)$.
Trially check all the codewords other than $0, 1$
have weight exactly 2^{m-1} :
either
 (v, v) with $v \in RM(1, m-1)$
 $v \neq 0, 1$
weight: $2^{m-2} + 2^{m-2}$
 $v \neq 0, 1$
 $v \neq 0,$

REMARKS

(1) There is a more general family of
higher-order Reed-Muller wodes
$$R(r,m)$$

which are H_2 -linear $[n, k, d]$ -wodes
with $n=2^m$ $m = 2^m$
 $d=2^{m-r}$ $m > d=2^{m-1}$
 $k=1+\binom{m}{1}+\binom{m}{2}+...+\binom{m}{r} > k=1+\binom{m}{1}=mt$

(2) Reed came up with a decoding algorithm Easter than syndrome decoding for R(r,m), called majority logic decoding - see Roman § 6.2.